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ABSTRACT General Terms

We propose an efficient method that applies directed soft arc con- Algorithms
sistency to a Distributed Constraint Optimization Problem (DCOP)
which is a fundamental framework of multi-agent systems. With Keywords
DCOPs a multi-agent system is represented as a set of variables and

a set of constraints/cost functions. We focus on DCOP solvers thatconstraint reasoning, distributed constraint optimization problem,
employ pseudo-trees. A pseudo-tree is a graph structure for a con-Soft arc consistency, multi-agent systems

straint network that represents a partial ordering of variables. Most

pseudo-tree-based search algorithms perform optimistic searches]  |INTRODUCTION

using explicit/implicit backtracking in parallel. However, for cost
functions taking a wide range of cost values, such exact algorithms

require many search iterations, even if the constraint density is ., . X . ;
relatively low. Therefore additional improvements are necessary With DCOPs multl-agt_ant systems are formallzed_ as a set of vari-
ables, a set of constraints, and a set of cost functions related to the

to reduce the search process. A previous study used a dynamic nstraints. Each variable represents the state of an agent. Con-
programming-based preprocessing technique that estimates the lo QNS : P agent.
straints and related cost functions represent the relationships be-

bound values of costs. However, there are opportunities for further tween agents. Distributed resource allocation problems. which in-
improvements of efficiency. In addition, modifications of the search -n ag : . P ’
cluding sensor networks and meeting scheduling, are modeled as

algl?hrghprpozgesggcrifjﬁ (% t;)pli)slieeéhs o?tszggitgr?sli(;\t/\éirc?/o(gggtsAC) en- DCOPs [4, 6, 7, 15]. Distributed cooperative search algorithms are
employed to obtain a solution that globally optimizes the values of

forcement to DCOP. In the proposed method, directed soft AC is cost functions
performed based on a pseudo-tree in a bottom up manner. Using In this work, we focus on exact search algorithms that exploit

the directed soft AC, the global lower bound value of cost func- seudo-tree 191, A pseudo-tree [5. 121 is a aranh structure that
tions is passed up to the root node of the pseudo-tree. The value ofA.P o [9. Ap h [ ; ] grap
gives a partial order of the variables in a constraint network. Most

each cost function is also reduced. As a result, the original problem seudo-tree-based exact search algorithms perform an optimistic

is converted to an equivalent problem which is efficiently solved us- gearch with implicit/exolicit backtra(?kin thatF;akes lace iﬂ ar-

ing common search algorithms. The performance of the proposed P P X 9 €s p P
allel. However, when cost functions return a wide range of val-

method is evaluated by experimentation. The results show that it is Les. these exact algorithms take manv search iterations. even if the
more efficient than previous methods that estimate the lower bound ”,~™" . gonit . Y ; ’ .
density for constraints is relatively low. The main reason for this

of costs. Moreover, the proposed method is efficient for approxi- .
mation algorithms that use bounded errors. drawback is the redundant _s_earch fo_r _the lower bounds of evalu-
ated values. Therefore additional efficient methods are necessary
to reduce the search.
Candidates of additional efficient methods are categorized into

A Distributed Constraint Optimization Problem (DCOP) is a fun-
damental framework of multi-agent cooperation [8, 9, 10, 14, 16].

Categories and Subject Descriptors preprocessing and add-on processing. Preprocessing is reasonable
1.2.11 [ARTIFICIAL INTELLIGENCE [: Distributed Avrtificial if it is simply added to existing preprocessing for pseudo-tree gen-
Intelligence eration. Add-on processing may be efficient because it exploits

more information obtained during the search process. However the
Cite as: Directed Soft Arc Consistency in Pseudo Trees, Toshihiro Mat- modification of the distributed search algorithm may not be easy.
sui, Marius Glin Silaghi, Katsutoshi Hirayama, Makoto Yokoo and Hiroshi  In a previous study, a preprocessing technique estimated the lower
Matsuo,PrOC. Of Sth Int. Conf. on Aut'0n0m0u.s Agents and Multla' bound of evaluated values [1’ 7] A dynamic programming method
gent Systems (AAMAS 2009cker, Sichman, Sierra and Castelfranchi o forms the estimation. However, there are opportunities for fur-

(eds.), May, 10-15, 2009, Budapest, Hungary, pp. XXX-XXX. . - . .
Copyright(© 2009, International Foundation for Autonomous Agents and ther improvements of efficiency. In addition, the search algorithm

Multiagent Systems (www.ifaamas.org). All rights reserved. has to be modified to use the estimated lower bounds.
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Figure 1: pseudo-tree and ADOPT pseudo-trees is important. We show an outline of cost computa-
tion in ADOPT [9], an efficient distributed constraint optimization
algorithm. Agent knows the following information.

gorized into either the tree or the back edges of the pseudo-tree.
The tree edges represent the partial order relation between the two
variables.

There is no back edge between different sub-trees. Therefore, a
divide-and-conquer strategy can be applied to the search processing
for different sub-trees. By employing this property, search process-

We propose an efficient method that applies soft arc consistency
(soft AC) [3, 13] to DCOPs. The soft AC generalizes arc con-
sistency and can be applied to extended classes of constraint sat- e current context: current partial solution of the ancestor nodes
isfaction problems including DCOPs. For constraint optimization of z;. Assignments in the current context are received from
problems, additional control is necessary to avoid the infinite loop other agents.
of soft AC. In the proposed method, soft AC is performed based e [bi(x;,d), ubi(x;,d): boundary of optimal cost for each
on pseudo-trees in a bottom up manner. Such processing can be valued of variablex; and sub-tree routed at’s child vari-

considered a version of directed soft arc consistency [3]. Using able nodex;. 1b;(z;,d) andub;(z;,d) are received from
pseudo-tree-based directed soft arc consistency, the global lower child nodezx;. Each boundary value is related to an assign-
bound value is passed up to the root node of the pseudo-tree, reduc- ment used in the computation. When the assignment for
ing values of each cost function. As a result, the original problem is (z;,d) is incompatible withi’s current context]b;(z;, d)
converted to an equivalent problem that is efficiently solved using andub;(z;, d) are reset t@ andoo respectively.

common search algorithms. No modification of search algorithms The computation in ageritis shown as follows. Local cost (d)

is necessary except for the evaluat_ion of unary copstraints 9€Ne o1 valued of variablex; andi’s current context is defined as fol-
ated by soft arc consistency. The directed soft AC in pseudo-treeslows

resembles a previous method using dynamic programming. How-

ever, it not only estimates the lower bound but also modifies the Si(d) = > fi;(d,dy) (1)
problem. Redundancy of the original problem is well reduced by (z,d;)€i's current context; eupper neighborhood nodes of
the modification. Moreover, the proposed method is efficient for Upper boundJ B; (d) and lower bound. B; (d) for valued of vari-
approximation algorithms that use bounded errors. ablez; and the sub-tree routed af are defined as follows.

The outline of the paper is as follows. In Section 2, the back-
ground of the work is shown, which includes DCOP, pseudo-tree- LBi(d) = &i(d)+ Y Ibi(z;,d) 2
based cost computation, directed soft AC. Then we propose a pseudo- jechild nodes of
tree based directed soft AC in Section 3. Our proposed method is UBi(d) = &:(d)+ Z ubi(z;, d) 3)

evaluated by the results of experiments in Section 4 and proposed
method is compared with the preprocessing methods of a previous
work. In Section 5, considerations are shown about related works. Upper bound/ B; and lower bound. B; for the sub-tree routed at

jechild nodes of

We present our conclusion in Section 6. z; are defined as follows.
LB; = min LB;(d) )
2. BACKGROUND 4€D;
The background of our work includes the distributed constraint UB: = 52};1}1. UBi(d) ©)

optimization problem, pseudo-tree-based cost computation, and di-

. i ADOPT performs distributed asynchronous processing based on
rected soft arc consistency enforcing.

the branch-and-bound and A* algorithms. Message paths in ADOPT
2.1 Distributed constraint optimization are shown in Figure.l ((;). In this example, messages are sent based
L . o . . on the pseudo tree in Figure 1 (b). VALUE, COST, and THRESH-

A distributed constraint optimization problem is defined by a set OLD messages are exchanged between agents. Currentvaitie

Aof age?ts_, a seI;’ of \(arlablis, a sfj Of. binary coqsttlr)(launts and x; is sent to the lower neighborhood nodespfusing a VALUE

a set” of binary functions. Agent has its own variable:;. messagelb;(x;, d) andub; (z, d) are received from child node;

takes a value from discrete finite domaih. The value ofz; is of z; using a COST message. A THRESHOLD message is used

controlled by agent. Constraintc; ; represents the relationship 15 ajocate costs among sub-trees. As a result of search process-

.bet';wfgenz(:jisndmbj.. ThefCOSt.Of an;\SjgnmgﬁmiBli), (5, d_f%} ing, at root noder, L B, andU B,. converge into the global optimal

is defined by a binary functiofi ;(di, d;) : Di x D; — N. The cost. The global optimal solution is decided based on the optimal

goal is to find a global optimal solutiqA that minimizes the global cost. The details of the ADOPT are shown in [9]. Other search al-

costfunction:y ., e {(a;a,), (2051 ca fini (dis dy)- gorithms that employ the pseudo-tree use similar computation for
costs. LB; and U B; immediately reach their true values if the
2.2 Pseudo-tree search algorithm performs effectively. In the case of minimiza-

A pseudo-tree [5, 12] is a graph structure that defines a partial tion problems, optimistic search takes many iterations to compute
order on variables. The pseudo-tree is generated using a depth firsthe true lower bound. Therefore, improving accuracy of the lower
traversal of the constraint network. For example, the pseudo-treebounds is important. A previous work employed lower bounds that
in Figure 1 (b) is generated from the constraint network in Fig- are estimated in preprocessing, which is a subset of dynamic pro-
ure 1 (a). The edges of the original constraint network are cate- gramming.
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(@) original problem (b) projection (c) extension  (d) equivalent problem Figure 3: pseudo-tree based directed soft arc
Figure 2: directed soft arc consistency enforcing consistency enforcing
2.4 Soft arc consistency In addition, separating the global lower bound value of 3 in the root

Soft arc consistency enforcement [3, 13] generalizes arc consis-Node is possible. However we prefer the problem shown as (d).
tency. The soft AC can be applied to an extended class of constraint

satisfaction problems including DCOPs. Using soft AC, the orig- 3. DIRECTED SOFT AC IN PSEUDO-TREE

inal problem is converted into an equivalent problem that is more | this work, we propose a preprocessing method that applies

effectively solved. In addition to sef' of binary cost functions,  directed soft AC based on pseudo-trees. In the following we explain
soft AC employs sef™ of unary functions for variables. A unary  the proposed method.

function forz; is denoted ag;. Moreover, we use the following . .

notations € f denotes a tuple of assignments for binary function 3.1 Applying directed soft AC

f. ti {3 = (d) denotes that tuple contains an assignmet;, d). As shown in subsection 2.3, some DCOP solvers compute costs

Xy C X denotes a set of variables that are related to a fungtion  based on the pseudo-trees in a bottom up manner. Therefore it is
The process of enforcing soft arc consistency is shown in Algo- reasonable to apply directed soft AC based on pseudo-trees in a

rithm 1*. In soft AC, both projection and extension operation are it-  similar manner. The pseudo-tree-based directed soft AC gives an

eratively applied to the constraint network. Projection moves costs equivalent problem that reduces the iteration of search processing

from binary constrainyf to unary constrainf; based on the lower  for the lower bounds of costs. Figure 3 (a) shows an example of di-

bound off for the assignmeritr;, d). Extension moves costs from  rected soft AC based on pseudo-tree. The directed soft AC process-

unary constrainf; to binary constrainf based on the lower bound ing is applied from the leaf nodes to the root node. The projection

of f; for the assignmen(z;, d). In this algorithm, arc consistency  and extension procedures are the same as the ones of Algorithm 1

operations are simply repeated until the equivalent problem con- except that extension is also applied to the non-absorbing costs.

verges. In the general case of constraint optimization problems, Each node performs the following two processing phases:

soft arc consistency may not converge, because a projection is an L , ) )

inverse of an extension. In line 13 of Algorithm 1, extension is - Projection between its own unary function and binary func-

allowed when the unary cost is absorbing. This limitation avoids tions for all lower neighborhood nodes. _

the infinite loop. However, if cost functions take non-absorbing ~ 2- €xtension between its own unary function and a binary func-

values, extension operations are not applied. Therefore it is neces- tion for its parent node.

sary to apply extension for non-absorbing costs. On the other hand,|n the extension phase, the whole cost of its own unary function is
additional methods are also necessary for convergence. moved to upper tree edge. No extension operations are performed
. . for upper back edges. It is necessary to sum up cost values cor-
2.5 Directed soft arc conS|stency rectly. Projection in the leaf nodes is obviously unnecessary. If a
Directed soft Arc Consistency (directed soft AC) [3] sequentially leaf node has an initial unary function, extension can be performed.
applies soft AC operations based on a direction on the constraint Non-leaf nodes perform the directed soft AC after all child nodes
network. Using the direction, directed soft AC converges even if it complete the processing.
performs the extension for non-absorbing costs. Note that projection for a back edge is applied to its upper vari-
An example of directed soft AC is shown in Figure 2. (a) is the able node. That is different from the cost evaluation for the back
original problem, which consists of three variables and two binary edges in subsection 2.3. In the DCOP solvers, cost evaluation for a
constraints/functions. Each variable takes a value from its domain back edge is performed by its lower variable node. Then the evalu-
{a,b}. Each label for an edge represents a cost for a tuple of as- ated cost is sent to its ancestor nodes by tree edges. For example, in
signments. The initial values of unary functions are set to zero. Figure 3, the cost fofy 3 is evaluated bys. The cost is necessary
The initial unary costs are omitted in the figure. In this example, in z1 andxzo. On the other hand, the direction of the soft AC is
directed soft AC is performed froms, to zo. (b) shows a projec- not originally restricted. Therefore it can be applied in a different
tion that moves the cost gfi » to f1. (c) shows a extension that ~ way. For example, the following method is also possible. (1) The
moves the cost of; to fo,1. The modified costs are underlined in  costs of back edge are moved to lower variable node. (2) Then the
the figure. Similarly, projection and extension are applied for all costs of the lower variable node are moved to its upper tree edge.
assignments of all functions. (d) is an equivalent problem obtained That resembles the computation of DCOP solvers. The example
as a result. Note that global lower bound values are passed up tois shown in Figure 3 (b). Moreover, moving a part of costs in the
upper variable nodes. Finally, the global lower bound is summed projection and the extension is possible. For example, a cost for a
into fo. The costs for other unary functions are decreased to zero. variable can be distributed equally to all upper edges.
If a pseudo-tree has no back edges, the equivalent problem di-
1The original pseudo code is shown in [13]. We modified some rectly gives a global optimal solution. In root nodg its opti-
notations. mal assignment i§x,., argmin, f(d)). The global optimal cost




Algorithm 1: soft arc consistency enforcing

Projectionf, ¢, d) begin
m «— 0; v «— oo;
foreacht € f s.t.t| ;3 = (d) dowv « min(v, f(1));
if v affectsf;(d) then begin
fild) < fi(d) +vim < 1;
foreacht € f s.t.t) ;3 = (d) do f(t) — f(t) — v;
end;
return m;
end.

©CoO~NOUA WNPE

11 Extensiony, d, f) begin

oO~NOUBWNE

12 m «— 0; v« fi(d); 12
13 if vis oo then begin /I remove for directed soft AC 13
14 foreacht € f s.t.t ;) =(d) do 14
15 if v affectsf(t) then begin 15
16 f@) — Fft) +v;m — 1; 16
17 end; 17
18 fi(d) < fi(d) — v; 18
19 end 19
20 return m;
21 end. gg
23 SAC(X, D, F! U F) begin 23
25  while (m) do begin 25
26 myp < me < 0; 26
27 foreach f € F do 27
28 foreachi € X do 28
29 foreachd € D; domy < mpV Projectionf, 4, d); 29
30 foreachi € X do
31 foreach f € Fs.t.i € Xy do 30
32 foreachd € D; dom. < meV Extension, d, f); 31
33 m <« myp V Mme; 32
34 endg 33
35 end. 34
is ming f-(d). In non-root node, when its parent nodg has an gg
optimal assignmentz;, d;), ¢'s optimal assignment i¢; such that 37

fi,;(di,dj) = 0. If a pseudo-tree has back edges, DCOP solvers

are necessary to find a global optimal solution. Equivalent prob39
lems obtained using the soft AC are solved using common DCORO
solvers. Equivalent problems contain unary functions. For mos
DCORP solvers, adding evaluations for unary functions is easy. In
fact, pseudo-tree-based directed soft AC passes up the global lowsy
bound to the root node of the pseudo-tree. Therefore only the rodb

Algorithm 2: pseudo-tree based directed soft AC enforcing
[/ initialize node:
let N, denote neighborhood nodesiof

Di — ¢; Il parent node of
L; —{}: /I descendant nodes of
U; «— Nj; I/ unvisited neighborhood nodesof

foreachj € N; dom; ; < 0; Il flags
if 4 is the initiator nodehen send loop-back DISCOVER messageto
process messages as follows;

/I arrive from<’s parent nodej
for DISCOVER message fromdo begin
Di — J; Il p; « 1 if 4 is the initiator node
foreachk € N;\{j} do begin // notify that: has been visited
send VISITED message kg m; j, < 1;
end;
if N; ={j} A j# ithenbegin // jis the only one neighbor af
foreachd € D; do Extension(,d,f]?,i);
send RETURN}, f;l) to j; /I backtracking
foreachd € D; do Projection(f]?’i,j,d); /I use dummy;;
end,
end;

I/ return froms’s child nodej/resume depth first search
for RETURN(L.f) message frorg do begin
if j # ithenbeginL; «— L; U L; replacef; ; by f; end;

if there exists € U; then begin /I visit next node
send DISCOVER to the most pribr U; — U;\{k};
end else begin
foreachl € N; N L; do foreachd € D, do Projectiongfii Lhd);
if p; # i then begin [l return to parént node
foreachd € D; do Extension(,d,f;;i’i);
send RETURNL; U {4},f} ;) top;; /I backtracking
foreachh s.t.h € N; Ah'¢ L; do
foreachd € Dy, do ProjectionQ‘}'L ohd); 1l use dummyfy,
end elsethe algorithm has terminated;
end;
end;

/I remove:’s neighborhood nodg from unvisited nodes
for VISITED message from do begin
U; — U;\{j}; send ACK message tg

2 end

/I receive acknowledge of VISITED message
for ACK message from do begin

node has a non-zero unary function if there are no absorbing cost I’fnw - 06 forallk € N then
_ _ H i i i mi k= i
A pseudo-tree-based directed soft AC is shown in Algorithm 2.48 send loop-back RETURNE,{}) to; // resume depth first search

The algorithm is based on a distributed depth-first search [2]. Bayg eng;
sically, the algorithm performs a depth first search traversal using
four messages: DISCOVER (arrive to next node), RETURN (back- for each constraint and for each value of a variable. Therefore, the
track), VISITED (disable neighborhood) and ACK (synchronize). complexity of the total computation is linear with the number of
As a result, a pseudo-tree for a constraint network is built. There tuples for all constraints. The space complexity is linear with the
are a few minor modifications to embed soft AC processing. The total number of values for all variables. Computational overhead
soft AC is performed in the backtracking steps (lines 17-19, 25, 29- of the preprocessing is clearly less than the corresponding iterative
34). Note that each projection/extension must be performed in two processing of ADOPT.
nodes. In the pseudo codg,, denotes’s copy of f; x. In bottom
side node of a edge, a du}n?my unary function is usedina projection 3-3  Correctness
(lines 19 and 34). RETURN messages are also modified to handle In equivalent problems obtained using soft AC, each cost value
information of soft AC. for a complete solution equals the one in the original problem.
. Therefore the global optimal cost and solution are the same as the

3.2 Preprocessing overheads original ones. No modification of search algorithms is necessary

In arc consistency enforcing, projection and extension are ap- except for the evaluation of unary constraints that are generated by
plied to a couple of a variable’s value and tuples of assignments soft arc consistency. Therefore correctness and termination hold in
that contain the variable’s value. Their computational complexity most search algorithms.
is linear with the number of tuples. The proposed method applies .
projection and extension based on the pseudo-tree. Projection is3-4 Usmg bounded errors
applied for each constraint and for each value of a variable that is  Even if soft AC reduces the redundancy of the original problem,
the upside node of the constraint edge. Extension is also appliedexact search methods requires many iterations for difficult prob-




Table 1: calculation of DPO, DP1 and DP2

DPO | h;(d;) := Z]‘e child nodes ofi 2_ke upper neighborhood nodes pf!illd; € D; MiNd; e D;, fik(dj, dr)
DP1 | hi(di) := Zje child nodes of MiNd; e p; (5 (dj) + fi.i(di, d;))
DP2 | hi(d:) := Zje child nodes ofi Mild; €D, (hj(ds) + fi,;(di, ds) + Zke upper neighborhood nodes pf{i} ming, e, fi.k(dj, dr))

lems that consist of a large number of variables and dense con-Refer to [1, 9] for details.

straints. In such cases, approximation with bounded errors is use-

SACND is a hon-directional soft AC shown in Algorithm 1. Note

ful [9]. Bounded error assures solution quality and reduces searchthat SACND does not perform any extension operations. The ex-
iterations. Basically, the approximation method terminates when tension is blocked by the condition in line 13 of Algorithm 1. That
the difference between the upper and lower bounds reaches the pais necessary to avoid infinite loop of projections and extensions.

rameter value of the bounded erfain the root node. Pseudo-tree

SACPTDTEX is the pseudo-tree based directed soft AC shown in

based directed soft AC preprocessing is also efficient for the ap- subsection 3.1. SACPTP is a subset of SACPTDTEX. SACPTP

proximation method. Global lower bound values in the root node

immediately push up the lower bound. Moreover, the reduced con-

only performs projection and resembles SACND except for the di-
rection of the soft AC. SACPTDP2 is a different version of the

straint costs improves convergence of the lower and upper boundspseudo-tree-based directed soft AC that is similar to DP2. An ex-

into the bounded errors.

4. EVALUATION

ample of SACPTDP2 is shown in Figure 3 (b). The difference
between SACPTDP2 and SACPTDTEX is the direction of pro-

jection for the back edges. SACPTDTP2 performs the projection

for a back edge and its downside node. In the root node, the esti-

We evaluate the proposed method by the results of experiments.jated lower bounds of SACPTDP2 equal those of DP2. However,
The efficiency of the proposed method and previous method wasj, SACPTDP2, cost values of the binary constraints are reduced.

compared. We also analyzed and considered their efficiency.

4.1 Settings of experiment

Moreover, the non-absorbing values of the unary cost functions of
non-root nodes are reduced to zero.
Pseudo-trees are generated using depth first traversal with most-

We used graph coloring problems with three colors. Each prob- constrained order. In our experiments, preprocessing overhead was

lem consists of: ternary variables and x n binary constraints.

ignored because it is sufficiently small compared to search process-

straints are randomly set from integer values between 1 and 1004 message cycle, each agent reads the messages from its receiving

with uniform probability. The results are averaged for fifty prob-

queue. Then the agent writes messages for the sending queue. The

lem instances. ADOPT and preprocessing methods were applied tomessages in each queue are exchanged at the end of the cycle. The

each problem. The preprocessing methods are as follows:

e no preprocessing (ORIG)

number of message cycles was limited 5. The experiment was
aborted at the limit number of message cycles. In that case, the
number of message cycles of the instance is considered the limit

e dynamic programming based methods(DPO, DP1, and DP2) number.

e directed soft AC based methods (SACND, SACPTDP2, SAC-
PTP, and SACPTDTEX)

DPO, DP1, and DP2 are dynamic programming based methods pro-

posed in [1]. They estimate a lower bound value for each vdjue
of a variabler;. Table 1 shows the lower bound calculation that is

performed based on the pseudo-tree in a bottom up manner. This

computation is rather simple. However, modifications of ADOPT

4.2 Efficiency for ADOPT

We evaluated the performance of the combination of ADOPT
with preprocessing. The number of message cycles at convergence
and the ratio of instances that correctly terminated are shown in
Figure 4. The result shows that SACPTDTEX is most efficient to
reduce message cycles. In the case ef 25, some instances of

are necessary to exploit the estimated lower bound. We modified SACPTDTEX, SACPTDP2 and DP2 correctly terminated. SAC-

ADOPT as follows.

e backtracking threshold: in ADOPT, each variable node main-
tains values calledacktracking thresholdBacktracking thresh-
old thr; of node: represents a cost allocated to the sub-tree
rooted ati. In the original version of ADOPT,hr; takes a
value betweer.B, andU B;. In the modified version, the
lower bound ofthr; is limited toh;(d;). d; denotes the cur-
rent assignment aof ;.

e b;i(z;,d): as shown in subsection 2.8 (z;, d) is initial-
ized/reset to zero in the original version. In the modified
version,lb;(z;, d) is initialized/reset toning e p, hj(d'). It
is assumed that's parent node knowsh;(d'). However,
in ADOPT, each node has no information about current as-
signments of its child nodes. Therefore the minimum value
of estimated lower bounds is always used.

e initial assignment of;: z; is initialized to argminh;(d).

2In fact, ADOPT with error bound always keeps a margin be-

PTP reduces more message cycles than SACND does. Both of
them only apply projection. The result shows that SACPTP is more
efficient than SACND because SACPTP exploits the pseudo-tree.
Another difference between them is the direction of soft arc consis-
tency. Note that the effect of DP2 is less significant than the one of
SACPTDP2, although they estimate the same global lower bounds
in the root node.

4.3 Accuracy of lower bound

Each preprocessing method estimates lower bound values of costs.
Accuracy of the lower bound for the optimal cost is shown in Fig-
ure 5. DPO avg., DP1 avg. and DP2 avg. shows averaged accu-
racy for all nodes except leaf nodes. Others show accuracy at root
nodes. The results are averaged for all instances that correctly ter-
minated. Note that a lower bound is estimated for each value of a
variable. Figure 5 (a) shows the accuracy of estimated lower bound
for a variable’s value in an optimal assignment. DP2, SACPTDP2
and SACPTDTEX estimates relatively higher lower bounds. The

tween the backtracking threshold and the lower bounds based on®*While averaged accuracies are evaluated in the study of DP0, DP1

the bounded error [9].

and DP2 [1], we mainly focus on the accuracy at root nodes.



o 1000 e Table 2: Cost of tuples (d=2)
S o110 PSS SU— — N — problem n weight of tuples num. of tuples [%]
= 800 . BORIG min. | max. [ ave.| 0 | 1-50] 51-100] 101-
@ ORIG 10| 13| 99.8[49.9| 0[50.2| 498 0
DT A (-l ] mDPO 15| 11| 99.9/500| 0499 501| o0
S 600 1 app 20| 1.0]/100.0|49.9| 0]501| 499/ 0
S 500 25| 1.0/100.0{49.9] 0[503| 49.7| 0
3 oDP2 SACPTDP2 [ 10| 0] 147.3[ 29.3[33.6] 40.9| 22.0| 3.5
g 400 15| 0]163.6|29.6|33.7|40.7| 21.8| 38
,g 300 B SACND 20| 0|172.1|29.0|33.8|41.7| 211| 35
i 25| 0/178.2|29.0|33.7| 41.4| 215| 34
g ?88 W SACFTP SACPTDTEX| 10| 0| 143.9]27.8(33.8] 42.3| 21.7| 22
= 0 i O SACPTDP2 15| 0]161.6|28.3|338|41.9| 21.3| 29
20| 0|170.8|28.2|338|422| 213| 27
10 15 20 25 OSACPTDTEX 25| 0|176.3| 28.4|33.8| 41.9| 215| 28
num. of nodes DP2 does not modify the original problem. Therefore, ADOPT has
= 10 1 BORIG to be modified to exploit the estimated lower bound. In the modi-
£ M fied version of ADOPT, the estimated lower bound is used to limit
£ 08 1 ®DPO the original lower bound. As shown in subsection 4.1, each node
i;g 06 M | oDP1 ¢ knows its estimated valuk; (d) that limits:'s lower bound. In
T 5 1|l cop2 addition, ¢ knows the estimated value;(d') of its child nodej.
S 2 04 i h;(d") improves the accuracy of allocation of costs betweand
% 02 | m SACND j. However, it is considered that the improvement in the modified
£ [ I B SACPTP version of ADOPT is smaller than one that is obtained by SAC-
= 0.0 + L — O SACPTDP2 PTDP2. More improvements of the modified ADOPT may be pos-
10 15 20 25 0 SACPTDTEX sible. However, more modifications of ADOPT are also necessary.
num. of nodes On the other hand, the pseudo-tree based directed soft AC converts
Figure 4: ADOPT (d=2) the original problem into an equivalent problem. The global lower
08 bound value is moved into the root node of the pseudo-tree. Al-
0.7 .71 ] M- [1.IT)| =DPOavg. most all cost values are reduced for all constraints. In particular,
2 P 0 L AL HE ML | ©DP1avg. unary non-absorbing constraints are substantially removed except
8 ODP2 avg, at the root node. Therefore redundancy of cost functions between
% oS U T U T 1 =DPO a parent node and its child nodes is reduced as much as possible.
% 0.4 A b} R - . - S I () - - . In search algorithms, any Complicated computation to exploit the
& 03 e AL L 2P difference of estimated values between a parent node and its child
:3’ 0.2 A A -] BDP2 nodes are unnecessary.
® 04 ] L | ®mSACND Figure 5 (b) shows a comparison of the accuracy between SAC-
00 | | [ TSACPTP PTDP2 and SACPTDTEX. In the figure, maximum and minimum
’ 10 5 2 05 LSACPTDP2 values of the accuracy are also shown. The maximum value of the
accuracy of SACPTDTEX is larger than the one of SACPTDP2.
num. of nodes B SACPTDTEX The effect of the highest lower bound value should be studied fur-
(a) accuracy of estimated lower bound ther. However, we can infer that the highest lower bound limits
for a variable’s value in optimal assignment the flipping of values of the variable in the root node, because
09 the variable’s value is optimistically selected based on its lower
M bound cost. Cost of tuples that are contained in binary cost func-
2 085 tions is shown in Table 2. The cost values of original problems
% s BSACPTDP2 min have gniform distribution. In. eguivalent problems, the average cost
20 BSACPTDP2 opt. assign. value is less th_an ones of onglnal_problems. Espemally_, cost values
5 of | D;| tuples in each cost functiofi; ; are decreased into zero.
g 075 T L DSACPTDpzm_aX Almost all instances of SACPTDP2 perforBan projections and
8 o7l ®SAPTDTEXmin 3(n — 1) extensions. SACPTDTEX perfornisin projections and
B SACPTDTEX opt. assign. 3(n — 1 — (number of leaf nodg$ extensions. In this problem
0.65 - D SACPTDTEX max setting, initial costs of unary constraints are zero. However, SAC-
10 15 20 25 PTDP2 temporally increases the unary cost in leaf nodes. Therefore
num. of nodes extension is necessary in leaf nodes.
(b) comparison between SACPTDP2 and SACPTDTEX 4.4 ADOPT with bounded errors

Figure 5: accuracy (d=2) | d the eff ) ) hods f
higher lower bound value can be considered as a main reason of We evaluated the effect of preprocessing methods for ADOPT

better effects of these method. Although accuracies of DP2 and with bounded errors. The number of message cycles at the con-

SACPTDP2 are equal in the root nddEACPTDP2 is more effec- vergence _and the ratio of instances that correctly terminated are
. . . show in Figures 6 and 7. With bounded error, ADOPT can cor-
tive to reduce search iterations.

As a result of DP2. better lower bounds are obtained. However rectly terminate in densely constrained problems. In the case with

' ' ' bounded errors, the proposed method more efficiently reduces the
“In Figure 5 (a), Averaged accuracies of DP2 and SACPTDP2 are Number of message cycles. ADOPT immediately terminates when
slightly different due to the difference of solutions/instances that the estimated lower bound is sufficiently greater than the difference
correctly terminated. between optimal cost and bounded error in the root node. The pro-
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Figure 7: ADOPT with bounded errors (d=3) ] ) ) ) .

) o ) non-restricted values of a variable is 3, the variance of the diffi-
posed method is more efficient than DP2 when the estimated lower ity of problem instances is different from the one of the case of
bound is insufficient for the difference. | D;| = 3. The result shows that soft AC decreases number of mes-

sage cycles of ADOPT in both cases.
4.5 Other cases of problems

Figure 8 shows a result in the case of very low link density and 4.6 EfﬂC'enCy for bottom up optimistic search
relatively large number of variables. Figure 9 shows a result in  The proposed method computes the global lower bound in a bot-
the case offl = 2 and|D;| = 4. Additionally, the problem also tom up manner. Therefore it can be considered that the estimated
contains unary hard constraints that restrict some values of vari- lower bound is efficient for optimistic search algorithms that are
ables. The number of restricted values for each variable is betweenmainly driven in a top down manner. Therefore different type of
0 and 2 with uniform probability. While the average number of algorithms that are mainly driven in bottom up manner may not be
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