
Directed Soft Arc Consistency in Pseudo Trees

Toshihiro Matsui
Nagoya Institute of Technology

Gokiso-cho, Showa-ku
Nagoya 466-8555, Japan
matsui.t@nitech.ac.jp
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ABSTRACT
We propose an efficient method that applies directed soft arc con-
sistency to a Distributed Constraint Optimization Problem (DCOP)
which is a fundamental framework of multi-agent systems. With
DCOPs a multi-agent system is represented as a set of variables and
a set of constraints/cost functions. We focus on DCOP solvers that
employ pseudo-trees. A pseudo-tree is a graph structure for a con-
straint network that represents a partial ordering of variables. Most
pseudo-tree-based search algorithms perform optimistic searches
using explicit/implicit backtracking in parallel. However, for cost
functions taking a wide range of cost values, such exact algorithms
require many search iterations, even if the constraint density is
relatively low. Therefore additional improvements are necessary
to reduce the search process. A previous study used a dynamic
programming-based preprocessing technique that estimates the lower
bound values of costs. However, there are opportunities for further
improvements of efficiency. In addition, modifications of the search
algorithm are necessary to use the estimated lower bounds.

The proposed method applies soft arc consistency (soft AC) en-
forcement to DCOP. In the proposed method, directed soft AC is
performed based on a pseudo-tree in a bottom up manner. Using
the directed soft AC, the global lower bound value of cost func-
tions is passed up to the root node of the pseudo-tree. The value of
each cost function is also reduced. As a result, the original problem
is converted to an equivalent problem which is efficiently solved us-
ing common search algorithms. The performance of the proposed
method is evaluated by experimentation. The results show that it is
more efficient than previous methods that estimate the lower bound
of costs. Moreover, the proposed method is efficient for approxi-
mation algorithms that use bounded errors.
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1. INTRODUCTION
A Distributed Constraint Optimization Problem (DCOP) is a fun-

damental framework of multi-agent cooperation [8, 9, 10, 14, 16].
With DCOPs multi-agent systems are formalized as a set of vari-
ables, a set of constraints, and a set of cost functions related to the
constraints. Each variable represents the state of an agent. Con-
straints and related cost functions represent the relationships be-
tween agents. Distributed resource allocation problems, which in-
cluding sensor networks and meeting scheduling, are modeled as
DCOPs [4, 6, 7, 15]. Distributed cooperative search algorithms are
employed to obtain a solution that globally optimizes the values of
cost functions.

In this work, we focus on exact search algorithms that exploit
a pseudo-tree [9]. A pseudo-tree [5, 12] is a graph structure that
gives a partial order of the variables in a constraint network. Most
pseudo-tree-based exact search algorithms perform an optimistic
search with implicit/explicit backtracking that takes place in par-
allel. However, when cost functions return a wide range of val-
ues, these exact algorithms take many search iterations, even if the
density for constraints is relatively low. The main reason for this
drawback is the redundant search for the lower bounds of evalu-
ated values. Therefore additional efficient methods are necessary
to reduce the search.

Candidates of additional efficient methods are categorized into
preprocessing and add-on processing. Preprocessing is reasonable
if it is simply added to existing preprocessing for pseudo-tree gen-
eration. Add-on processing may be efficient because it exploits
more information obtained during the search process. However the
modification of the distributed search algorithm may not be easy.
In a previous study, a preprocessing technique estimated the lower
bound of evaluated values [1, 7]. A dynamic programming method
performs the estimation. However, there are opportunities for fur-
ther improvements of efficiency. In addition, the search algorithm
has to be modified to use the estimated lower bounds.
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We propose an efficient method that applies soft arc consistency
(soft AC) [3, 13] to DCOPs. The soft AC generalizes arc con-
sistency and can be applied to extended classes of constraint sat-
isfaction problems including DCOPs. For constraint optimization
problems, additional control is necessary to avoid the infinite loop
of soft AC. In the proposed method, soft AC is performed based
on pseudo-trees in a bottom up manner. Such processing can be
considered a version of directed soft arc consistency [3]. Using
pseudo-tree-based directed soft arc consistency, the global lower
bound value is passed up to the root node of the pseudo-tree, reduc-
ing values of each cost function. As a result, the original problem is
converted to an equivalent problem that is efficiently solved using
common search algorithms. No modification of search algorithms
is necessary except for the evaluation of unary constraints gener-
ated by soft arc consistency. The directed soft AC in pseudo-trees
resembles a previous method using dynamic programming. How-
ever, it not only estimates the lower bound but also modifies the
problem. Redundancy of the original problem is well reduced by
the modification. Moreover, the proposed method is efficient for
approximation algorithms that use bounded errors.

The outline of the paper is as follows. In Section 2, the back-
ground of the work is shown, which includes DCOP, pseudo-tree-
based cost computation, directed soft AC. Then we propose a pseudo-
tree based directed soft AC in Section 3. Our proposed method is
evaluated by the results of experiments in Section 4 and proposed
method is compared with the preprocessing methods of a previous
work. In Section 5, considerations are shown about related works.
We present our conclusion in Section 6.

2. BACKGROUND
The background of our work includes the distributed constraint

optimization problem, pseudo-tree-based cost computation, and di-
rected soft arc consistency enforcing.

2.1 Distributed constraint optimization
A distributed constraint optimization problem is defined by a set

A of agents, a setX of variables, a setC of binary constraints and
a setF of binary functions. Agenti has its own variablexi. xi

takes a value from discrete finite domainDi. The value ofxi is
controlled by agenti. Constraintci,j represents the relationship
betweenxi andxj . The cost of an assignment{(xi, di), (xj , dj)}
is defined by a binary functionfi,j(di, dj) : Di × Dj → N. The
goal is to find a global optimal solutionA that minimizes the global
cost function:

P

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj).

2.2 Pseudo-tree
A pseudo-tree [5, 12] is a graph structure that defines a partial

order on variables. The pseudo-tree is generated using a depth first
traversal of the constraint network. For example, the pseudo-tree
in Figure 1 (b) is generated from the constraint network in Fig-
ure 1 (a). The edges of the original constraint network are cate-

gorized into either the tree or the back edges of the pseudo-tree.
The tree edges represent the partial order relation between the two
variables.

There is no back edge between different sub-trees. Therefore, a
divide-and-conquer strategy can be applied to the search processing
for different sub-trees. By employing this property, search process-
ing can be performed in parallel.

2.3 Computation of cost value in pseudo-trees
In this work, how search algorithms compute cost values using

pseudo-trees is important. We show an outline of cost computa-
tion in ADOPT [9], an efficient distributed constraint optimization
algorithm. Agenti knows the following information.

• current context: current partial solution of the ancestor nodes
of xi. Assignments in the current context are received from
other agents.

• lbi(xj , d), ubi(xj , d): boundary of optimal cost for each
valued of variablexi and sub-tree routed atxi’s child vari-
able nodexj . lbi(xj , d) andubi(xj , d) are received from
child nodexj . Each boundary value is related to an assign-
ment used in the computation. When the assignment for
(xj , d) is incompatible withi’s current context,lbi(xj , d)
andubi(xj , d) are reset to0 and∞ respectively.

The computation in agenti is shown as follows. Local costδi(d)
for valued of variablexi andi’s current context is defined as fol-
lows.

δi(d) =
X

(xj ,dj)∈i’s current context, j∈upper neighborhood nodes ofi

fi,j(d, dj) (1)

Upper boundUBi(d) and lower boundLBi(d) for valued of vari-
ablexi and the sub-tree routed atxi are defined as follows.

LBi(d) = δi(d) +
X

j∈child nodes ofi

lbi(xj , d) (2)

UBi(d) = δi(d) +
X

j∈child nodes ofi

ubi(xj , d) (3)

Upper boundUBi and lower boundLBi for the sub-tree routed at
xi are defined as follows.

LBi = min
d∈Di

LBi(d) (4)

UBi = min
d∈Di

UBi(d) (5)

ADOPT performs distributed asynchronous processing based on
the branch-and-bound and A* algorithms. Message paths in ADOPT
are shown in Figure 1 (c). In this example, messages are sent based
on the pseudo tree in Figure 1 (b). VALUE, COST, and THRESH-
OLD messages are exchanged between agents. Current valuedi of
xi is sent to the lower neighborhood nodes ofxi using a VALUE
message.lbi(xj , d) andubj(x, d) are received from child nodexj

of xi using a COST message. A THRESHOLD message is used
to allocate costs among sub-trees. As a result of search process-
ing, at root noder, LBr andUBr converge into the global optimal
cost. The global optimal solution is decided based on the optimal
cost. The details of the ADOPT are shown in [9]. Other search al-
gorithms that employ the pseudo-tree use similar computation for
costs. LBi and UBi immediately reach their true values if the
search algorithm performs effectively. In the case of minimiza-
tion problems, optimistic search takes many iterations to compute
the true lower bound. Therefore, improving accuracy of the lower
bounds is important. A previous work employed lower bounds that
are estimated in preprocessing, which is a subset of dynamic pro-
gramming.



x
0

x
1

x
2

a b

a b

a b

1 2 3 4

4 3 2 1

1

a b

a b

a b

0 1 3 4

4 3 2 1

0

a b

a b

a b

0 1 3 4

5 3 3 1

5 3

0 0

a b

a b

a b

0 1 0 1

0 1 0 1

(a) original problem (b) projection (c) extension (d) equivalent problem

Figure 2: directed soft arc consistency enforcing
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2.4 Soft arc consistency
Soft arc consistency enforcement [3, 13] generalizes arc consis-

tency. The soft AC can be applied to an extended class of constraint
satisfaction problems including DCOPs. Using soft AC, the orig-
inal problem is converted into an equivalent problem that is more
effectively solved. In addition to setF of binary cost functions,
soft AC employs setF 1 of unary functions for variables. A unary
function forxi is denoted asfi. Moreover, we use the following
notations.t ∈ f denotes a tuple of assignments for binary function
f . t↓{i} = (d) denotes that tuplet contains an assignment(xi, d).
Xf ⊆ X denotes a set of variables that are related to a functionf .

The process of enforcing soft arc consistency is shown in Algo-
rithm 11. In soft AC, both projection and extension operation are it-
eratively applied to the constraint network. Projection moves costs
from binary constraintf to unary constraintfi based on the lower
bound off for the assignment(xi, d). Extension moves costs from
unary constraintfi to binary constraintf based on the lower bound
of fi for the assignment(xi, d). In this algorithm, arc consistency
operations are simply repeated until the equivalent problem con-
verges. In the general case of constraint optimization problems,
soft arc consistency may not converge, because a projection is an
inverse of an extension. In line 13 of Algorithm 1, extension is
allowed when the unary cost is absorbing. This limitation avoids
the infinite loop. However, if cost functions take non-absorbing
values, extension operations are not applied. Therefore it is neces-
sary to apply extension for non-absorbing costs. On the other hand,
additional methods are also necessary for convergence.

2.5 Directed soft arc consistency
Directed soft Arc Consistency (directed soft AC) [3] sequentially

applies soft AC operations based on a direction on the constraint
network. Using the direction, directed soft AC converges even if it
performs the extension for non-absorbing costs.

An example of directed soft AC is shown in Figure 2. (a) is the
original problem, which consists of three variables and two binary
constraints/functions. Each variable takes a value from its domain
{a, b}. Each label for an edge represents a cost for a tuple of as-
signments. The initial values of unary functions are set to zero.
The initial unary costs are omitted in the figure. In this example,
directed soft AC is performed fromx2 to x0. (b) shows a projec-
tion that moves the cost off1,2 to f1. (c) shows a extension that
moves the cost off1 to f0,1. The modified costs are underlined in
the figure. Similarly, projection and extension are applied for all
assignments of all functions. (d) is an equivalent problem obtained
as a result. Note that global lower bound values are passed up to
upper variable nodes. Finally, the global lower bound is summed
into f0. The costs for other unary functions are decreased to zero.

1The original pseudo code is shown in [13]. We modified some
notations.

In addition, separating the global lower bound value of 3 in the root
node is possible. However we prefer the problem shown as (d).

3. DIRECTED SOFT AC IN PSEUDO-TREE
In this work, we propose a preprocessing method that applies

directed soft AC based on pseudo-trees. In the following we explain
the proposed method.

3.1 Applying directed soft AC
As shown in subsection 2.3, some DCOP solvers compute costs

based on the pseudo-trees in a bottom up manner. Therefore it is
reasonable to apply directed soft AC based on pseudo-trees in a
similar manner. The pseudo-tree-based directed soft AC gives an
equivalent problem that reduces the iteration of search processing
for the lower bounds of costs. Figure 3 (a) shows an example of di-
rected soft AC based on pseudo-tree. The directed soft AC process-
ing is applied from the leaf nodes to the root node. The projection
and extension procedures are the same as the ones of Algorithm 1
except that extension is also applied to the non-absorbing costs.
Each node performs the following two processing phases:

1. projection between its own unary function and binary func-
tions for all lower neighborhood nodes.

2. extension between its own unary function and a binary func-
tion for its parent node.

In the extension phase, the whole cost of its own unary function is
moved to upper tree edge. No extension operations are performed
for upper back edges. It is necessary to sum up cost values cor-
rectly. Projection in the leaf nodes is obviously unnecessary. If a
leaf node has an initial unary function, extension can be performed.
Non-leaf nodes perform the directed soft AC after all child nodes
complete the processing.

Note that projection for a back edge is applied to its upper vari-
able node. That is different from the cost evaluation for the back
edges in subsection 2.3. In the DCOP solvers, cost evaluation for a
back edge is performed by its lower variable node. Then the evalu-
ated cost is sent to its ancestor nodes by tree edges. For example, in
Figure 3, the cost forf0,3 is evaluated byx3. The cost is necessary
in x1 andx0. On the other hand, the direction of the soft AC is
not originally restricted. Therefore it can be applied in a different
way. For example, the following method is also possible. (1) The
costs of back edge are moved to lower variable node. (2) Then the
costs of the lower variable node are moved to its upper tree edge.
That resembles the computation of DCOP solvers. The example
is shown in Figure 3 (b). Moreover, moving a part of costs in the
projection and the extension is possible. For example, a cost for a
variable can be distributed equally to all upper edges.

If a pseudo-tree has no back edges, the equivalent problem di-
rectly gives a global optimal solution. In root noder, its opti-
mal assignment is(xr, argmindfr(d)). The global optimal cost



Algorithm 1: soft arc consistency enforcing
1 Projection(f , i, d) begin
2 m ← 0; v ←∞;
3 foreach t ∈ f s.t.t↓{i} = (d) do v ← min(v, f ( t ));
4 if v affectsfi(d) then begin
5 fi(d) ← fi(d) + v; m ← 1;
6 foreach t ∈ f s.t.t↓{i} = (d) do f (t) ← f (t) − v;
7 end;
8 return m;
9 end.

11 Extension(i, d, f ) begin
12 m ← 0; v ← fi(d);
13 if v is ∞ then begin // remove for directed soft AC
14 foreach t ∈ f s.t.t↓{i} = (d) do
15 if v affectsf (t) then begin
16 f (t) ← f (t) + v; m ← 1;
17 end;
18 fi(d) ← fi(d) − v;
19 end;
20 return m;
21 end.

23 SAC(X, D, F 1 ∪ F ) begin
24 m ← 1;
25 while (m) do begin
26 mp ← me ← 0;
27 foreachf ∈ F do
28 foreach i ∈ Xf do
29 foreachd ∈ Di do mp ← mp∨ Projection(f , i, d);
30 foreach i ∈ X do
31 foreachf ∈ F s.t.i ∈ Xf do
32 foreachd ∈ Di do me ← me∨ Extension(i, d, f );
33 m ← mp ∨ me;
34 end;
35 end.

is mind fr(d). In non-root nodei, when its parent nodej has an
optimal assignment(xj , dj), i’s optimal assignment isdi such that
fi,j(di, dj) = 0. If a pseudo-tree has back edges, DCOP solvers
are necessary to find a global optimal solution. Equivalent prob-
lems obtained using the soft AC are solved using common DCOP
solvers. Equivalent problems contain unary functions. For most
DCOP solvers, adding evaluations for unary functions is easy. In
fact, pseudo-tree-based directed soft AC passes up the global lower
bound to the root node of the pseudo-tree. Therefore only the root
node has a non-zero unary function if there are no absorbing costs.

A pseudo-tree-based directed soft AC is shown in Algorithm 2.
The algorithm is based on a distributed depth-first search [2]. Ba-
sically, the algorithm performs a depth first search traversal using
four messages: DISCOVER (arrive to next node), RETURN (back-
track), VISITED (disable neighborhood) and ACK (synchronize).
As a result, a pseudo-tree for a constraint network is built. There
are a few minor modifications to embed soft AC processing. The
soft AC is performed in the backtracking steps (lines 17-19, 25, 29-
34). Note that each projection/extension must be performed in two
nodes. In the pseudo code,f i

j,k denotesi’s copy offj,k. In bottom
side node of a edge, a dummy unary function is used in a projection
(lines 19 and 34). RETURN messages are also modified to handle
information of soft AC.

3.2 Preprocessing overheads
In arc consistency enforcing, projection and extension are ap-

plied to a couple of a variable’s value and tuples of assignments
that contain the variable’s value. Their computational complexity
is linear with the number of tuples. The proposed method applies
projection and extension based on the pseudo-tree. Projection is
applied for each constraint and for each value of a variable that is
the upside node of the constraint edge. Extension is also applied

Algorithm 2: pseudo-tree based directed soft AC enforcing
1 // initialize nodei
2 letNi denote neighborhood nodes ofi;
3 pi ← ϕ; // parent node ofi
4 Li ← {}; // descendant nodes ofi
5 Ui ← Ni; // unvisited neighborhood nodes ofi
6 foreach j ∈ Ni do mi,j ← 0; // flags
7 if i is the initiator nodethen send loop-back DISCOVER message toi;
8 process messages as follows;

10 // arrive fromi’s parent nodej
11 for DISCOVER message fromj do begin
12 pi ← j; // pi ← i if i is the initiator node
13 foreachk ∈ Ni\{j} do begin // notify thati has been visited
14 send VISITED message tok; mi,k ← 1;
15 end;
16 if Ni = {j} ∧ j ̸= i then begin // j is the only one neighbor ofi
17 foreachd ∈ Di do Extension(i,d,f i

j,i);
18 send RETURN({i}, f i

j,i) to j; // backtracking
19 foreachd ∈ Dj do Projection(f i

j,i,j,d); // use dummyfj

20 end;
21 end;

23 // return fromi’s child nodej/resume depth first search
24 for RETURN(L,f ) message fromj do begin
25 if j ̸= i then beginLi ← Li ∪ L; replacef i

i,j by f ; end;
26 if there existsk ∈ Ui then begin // visit next node
27 send DISCOVER to the most priork; Ui ← Ui\{k};
28 end else begin
29 foreach l ∈ Ni ∩ Li do foreachd ∈ Di do Projection(f i

i,l,i,d);
30 if pi ̸= i then begin // return to parent node
31 foreachd ∈ Di do Extension(i,d,f i

pi,i);
32 send RETURN(Li ∪ {i},f i

pi,i) to pi; // backtracking
33 foreachh s.t.h ∈ Ni ∧ h /∈ Li do
34 foreachd ∈ Dh do Projection(f i

h,i,h,d); // use dummyfh

35 end elsethe algorithm has terminated;
36 end;
37 end;

39 // removei’s neighborhood nodej from unvisited nodes
40 for VISITED message fromj do begin
41 Ui ← Ui\{j}; send ACK message toj;
42 end;

44 // receive acknowledge of VISITED message
45 for ACK message fromj do begin
46 mi,j ← 0;
47 if mi,k = 0 for all k ∈ Ni then
48 send loop-back RETURN({},{}) to i; // resume depth first search
49 end;

for each constraint and for each value of a variable. Therefore, the
complexity of the total computation is linear with the number of
tuples for all constraints. The space complexity is linear with the
total number of values for all variables. Computational overhead
of the preprocessing is clearly less than the corresponding iterative
processing of ADOPT.

3.3 Correctness
In equivalent problems obtained using soft AC, each cost value

for a complete solution equals the one in the original problem.
Therefore the global optimal cost and solution are the same as the
original ones. No modification of search algorithms is necessary
except for the evaluation of unary constraints that are generated by
soft arc consistency. Therefore correctness and termination hold in
most search algorithms.

3.4 Using bounded errors
Even if soft AC reduces the redundancy of the original problem,

exact search methods requires many iterations for difficult prob-



Table 1: calculation of DP0, DP1 and DP2
DP0 hi(di) :=

P

j∈ child nodes ofi
P

k∈ upper neighborhood nodes ofj mindj∈Dj mindk∈Dk fj,k(dj , dk)

DP1 hi(di) :=
P

j∈ child nodes ofi mindj∈Dj (hj(dj) + fi,j(di, dj))

DP2 hi(di) :=
P

j∈ child nodes ofi mindj∈Dj (hj(dj) + fi,j(di, dj) +
P

k∈ upper neighborhood nodes ofj\{i} mindk∈Dk fj,k(dj , dk))

lems that consist of a large number of variables and dense con-
straints. In such cases, approximation with bounded errors is use-
ful [9]. Bounded error assures solution quality and reduces search
iterations. Basically, the approximation method terminates when
the difference between the upper and lower bounds reaches the pa-
rameter value of the bounded error2 in the root node. Pseudo-tree
based directed soft AC preprocessing is also efficient for the ap-
proximation method. Global lower bound values in the root node
immediately push up the lower bound. Moreover, the reduced con-
straint costs improves convergence of the lower and upper bounds
into the bounded errors.

4. EVALUATION
We evaluate the proposed method by the results of experiments.

The efficiency of the proposed method and previous method was
compared. We also analyzed and considered their efficiency.

4.1 Settings of experiment
We used graph coloring problems with three colors. Each prob-

lem consists ofn ternary variables andd × n binary constraints.
d is a parameter for the density of constraints. The costs of con-
straints are randomly set from integer values between 1 and 100
with uniform probability. The results are averaged for fifty prob-
lem instances. ADOPT and preprocessing methods were applied to
each problem. The preprocessing methods are as follows:

• no preprocessing (ORIG)
• dynamic programming based methods(DP0, DP1, and DP2)
• directed soft AC based methods (SACND, SACPTDP2, SAC-

PTP, and SACPTDTEX)

DP0, DP1, and DP2 are dynamic programming based methods pro-
posed in [1]. They estimate a lower bound value for each valuedi

of a variablexi. Table 1 shows the lower bound calculation that is
performed based on the pseudo-tree in a bottom up manner. This
computation is rather simple. However, modifications of ADOPT
are necessary to exploit the estimated lower bound. We modified
ADOPT as follows.

• backtracking threshold: in ADOPT, each variable node main-
tains values calledbacktracking threshold. Backtracking thresh-
old thri of nodei represents a cost allocated to the sub-tree
rooted ati. In the original version of ADOPT,thri takes a
value betweenLBi andUBi. In the modified version, the
lower bound ofthri is limited tohi(di). di denotes the cur-
rent assignment ofxi.

• lbi(xj , d): as shown in subsection 2.3,lbi(xj , d) is initial-
ized/reset to zero in the original version. In the modified
version,lbi(xj , d) is initialized/reset tomind′∈Dj

hj(d
′). It

is assumed thatj’s parent nodei knowshj(d
′). However,

in ADOPT, each node has no information about current as-
signments of its child nodes. Therefore the minimum value
of estimated lower bounds is always used.

• initial assignment ofxi: xi is initialized to argmindhi(d).

2In fact, ADOPT with error bound always keeps a margin be-
tween the backtracking threshold and the lower bounds based on
the bounded error [9].

Refer to [1, 9] for details.
SACND is a non-directional soft AC shown in Algorithm 1. Note

that SACND does not perform any extension operations. The ex-
tension is blocked by the condition in line 13 of Algorithm 1. That
is necessary to avoid infinite loop of projections and extensions.
SACPTDTEX is the pseudo-tree based directed soft AC shown in
subsection 3.1. SACPTP is a subset of SACPTDTEX. SACPTP
only performs projection and resembles SACND except for the di-
rection of the soft AC. SACPTDP2 is a different version of the
pseudo-tree-based directed soft AC that is similar to DP2. An ex-
ample of SACPTDP2 is shown in Figure 3 (b). The difference
between SACPTDP2 and SACPTDTEX is the direction of pro-
jection for the back edges. SACPTDTP2 performs the projection
for a back edge and its downside node. In the root node, the esti-
mated lower bounds of SACPTDP2 equal those of DP2. However,
in SACPTDP2, cost values of the binary constraints are reduced.
Moreover, the non-absorbing values of the unary cost functions of
non-root nodes are reduced to zero.

Pseudo-trees are generated using depth first traversal with most-
constrained order. In our experiments, preprocessing overhead was
ignored because it is sufficiently small compared to search process-
ing. We used simulation programs that iterate message cycles. In
a message cycle, each agent reads the messages from its receiving
queue. Then the agent writes messages for the sending queue. The
messages in each queue are exchanged at the end of the cycle. The
number of message cycles was limited to106. The experiment was
aborted at the limit number of message cycles. In that case, the
number of message cycles of the instance is considered the limit
number.

4.2 Efficiency for ADOPT
We evaluated the performance of the combination of ADOPT

with preprocessing. The number of message cycles at convergence
and the ratio of instances that correctly terminated are shown in
Figure 4. The result shows that SACPTDTEX is most efficient to
reduce message cycles. In the case ofn = 25, some instances of
SACPTDTEX, SACPTDP2 and DP2 correctly terminated. SAC-
PTP reduces more message cycles than SACND does. Both of
them only apply projection. The result shows that SACPTP is more
efficient than SACND because SACPTP exploits the pseudo-tree.
Another difference between them is the direction of soft arc consis-
tency. Note that the effect of DP2 is less significant than the one of
SACPTDP2, although they estimate the same global lower bounds
in the root node.

4.3 Accuracy of lower bound
Each preprocessing method estimates lower bound values of costs.

Accuracy of the lower bound for the optimal cost is shown in Fig-
ure 5. DP0 avg., DP1 avg. and DP2 avg. shows averaged accu-
racy for all nodes except leaf nodes. Others show accuracy at root
nodes3. The results are averaged for all instances that correctly ter-
minated. Note that a lower bound is estimated for each value of a
variable. Figure 5 (a) shows the accuracy of estimated lower bound
for a variable’s value in an optimal assignment. DP2, SACPTDP2
and SACPTDTEX estimates relatively higher lower bounds. The

3While averaged accuracies are evaluated in the study of DP0, DP1
and DP2 [1], we mainly focus on the accuracy at root nodes.
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higher lower bound value can be considered as a main reason of
better effects of these method. Although accuracies of DP2 and
SACPTDP2 are equal in the root node4, SACPTDP2 is more effec-
tive to reduce search iterations.

As a result of DP2, better lower bounds are obtained. However,

4In Figure 5 (a), Averaged accuracies of DP2 and SACPTDP2 are
slightly different due to the difference of solutions/instances that
correctly terminated.

Table 2: Cost of tuples (d=2)
problem n weight of tuples num. of tuples [%]

min. max. ave. 0 1-50 51-100 101-
ORIG 10 1.3 99.8 49.9 0 50.2 49.8 0

15 1.1 99.9 50.0 0 49.9 50.1 0
20 1.0 100.0 49.9 0 50.1 49.9 0
25 1.0 100.0 49.9 0 50.3 49.7 0

SACPTDP2 10 0 147.3 29.3 33.6 40.9 22.0 3.5
15 0 163.6 29.6 33.7 40.7 21.8 3.8
20 0 172.1 29.0 33.8 41.7 21.1 3.5
25 0 178.2 29.0 33.7 41.4 21.5 3.4

SACPTDTEX 10 0 143.9 27.8 33.8 42.3 21.7 2.2
15 0 161.6 28.3 33.8 41.9 21.3 2.9
20 0 170.8 28.2 33.8 42.2 21.3 2.7
25 0 176.3 28.4 33.8 41.9 21.5 2.8

DP2 does not modify the original problem. Therefore, ADOPT has
to be modified to exploit the estimated lower bound. In the modi-
fied version of ADOPT, the estimated lower bound is used to limit
the original lower bound. As shown in subsection 4.1, each node
i knows its estimated valuehi(d) that limits i’s lower bound. In
addition, i knows the estimated valuehj(d

′) of its child nodej.
hj(d

′) improves the accuracy of allocation of costs betweeni and
j. However, it is considered that the improvement in the modified
version of ADOPT is smaller than one that is obtained by SAC-
PTDP2. More improvements of the modified ADOPT may be pos-
sible. However, more modifications of ADOPT are also necessary.
On the other hand, the pseudo-tree based directed soft AC converts
the original problem into an equivalent problem. The global lower
bound value is moved into the root node of the pseudo-tree. Al-
most all cost values are reduced for all constraints. In particular,
unary non-absorbing constraints are substantially removed except
at the root node. Therefore redundancy of cost functions between
a parent node and its child nodes is reduced as much as possible.
In search algorithms, any complicated computation to exploit the
difference of estimated values between a parent node and its child
nodes are unnecessary.

Figure 5 (b) shows a comparison of the accuracy between SAC-
PTDP2 and SACPTDTEX. In the figure, maximum and minimum
values of the accuracy are also shown. The maximum value of the
accuracy of SACPTDTEX is larger than the one of SACPTDP2.
The effect of the highest lower bound value should be studied fur-
ther. However, we can infer that the highest lower bound limits
the flipping of values of the variable in the root node, because
the variable’s value is optimistically selected based on its lower
bound cost. Cost of tuples that are contained in binary cost func-
tions is shown in Table 2. The cost values of original problems
have uniform distribution. In equivalent problems, the average cost
value is less than ones of original problems. Especially, cost values
of |Di| tuples in each cost functionfi,j are decreased into zero.
Almost all instances of SACPTDP2 perform3dn projections and
3(n − 1) extensions. SACPTDTEX performs3dn projections and
3(n − 1 − (number of leaf nodes)) extensions. In this problem
setting, initial costs of unary constraints are zero. However, SAC-
PTDP2 temporally increases the unary cost in leaf nodes. Therefore
extension is necessary in leaf nodes.

4.4 ADOPT with bounded errors
We evaluated the effect of preprocessing methods for ADOPT

with bounded errors. The number of message cycles at the con-
vergence and the ratio of instances that correctly terminated are
show in Figures 6 and 7. With bounded error, ADOPT can cor-
rectly terminate in densely constrained problems. In the case with
bounded errors, the proposed method more efficiently reduces the
number of message cycles. ADOPT immediately terminates when
the estimated lower bound is sufficiently greater than the difference
between optimal cost and bounded error in the root node. The pro-
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Figure 6: ADOPT with bounded errors (d=2)
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Figure 7: ADOPT with bounded errors (d=3)

posed method is more efficient than DP2 when the estimated lower
bound is insufficient for the difference.

4.5 Other cases of problems
Figure 8 shows a result in the case of very low link density and

relatively large number of variables. Figure 9 shows a result in
the case ofd = 2 and |Di| = 4. Additionally, the problem also
contains unary hard constraints that restrict some values of vari-
ables. The number of restricted values for each variable is between
0 and 2 with uniform probability. While the average number of
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non-restricted values of a variable is 3, the variance of the diffi-
culty of problem instances is different from the one of the case of
|Di| = 3. The result shows that soft AC decreases number of mes-
sage cycles of ADOPT in both cases.

4.6 Efficiency for bottom up optimistic search
The proposed method computes the global lower bound in a bot-

tom up manner. Therefore it can be considered that the estimated
lower bound is efficient for optimistic search algorithms that are
mainly driven in a top down manner. Therefore different type of
algorithms that are mainly driven in bottom up manner may not be



appropriate for the estimated lower bounds.
We applied DP2 and SACPTDTEX to ODPOP [11] which is

an exact search algorithm using the pseudo-tree. Basically, the
ODPOP is a version of dynamic programming for the DCOPs [10].
However, it does not compute optimal cost at once. Each node iter-
atively sends pairs of a partial solution and its cost/utility value in
the best first order. Each node has to store all partial solutions that
are received from its child nodes. In the worst case, the space com-
plexity is exponential in the induced width of the pseudo-tree [10].
That is in contrast to the memory bounded search of the ADOPT. In
this experiment, we evaluated a subset of the problem instances that
can be solved with acceptable amounts of computational resources,
because our implementation of the ODPOP is not well optimized.
Note that the purpose of this experiment is not the comparison
between ADOPT and ODPOP. The number of message cycles is
shown in Figure 10. The result shows that SACPTDTEX is not ef-
ficient in some cases. We evaluated another soft AC preprocessing
SACPTDWEX that applies directed soft AC in top down manner.
An example of the SACPTDWEX is shown in Figure 3 (c). In this
preprocessing, projection and extension are applied to the down-
side variable/constraint. Each node applies extension for each tree
edge. In the extension, cost values are evenly divided among child
nodes. The result shows that SACPTDWEX is slightly efficient.
However, it is still unclear whether other types of soft arc consis-
tency methods will be more efficient for ODPOP.

5. RELATED WORKS
The proposed preprocessing methods is similar to dynamic pro-

gramming based preprocessing [1] and search algorithm [10]. These
methods compute the lower bounds of costs based on the pseudo-
tree in a bottom up manner. All of them directly give the optimal
solution in the case that the pseudo-tree has no back edges. In the
case that pseudo-tree has back edges, preprocessing methods only
estimate the lower bounds, because they are memory bounded algo-
rithms. The search algorithm using dynamic programming always
searches exact solutions. However its space complexity is exponen-
tial in the induced width of the pseudo-tree. The proposed method
is similar to DP2 in [1]. They evaluate global lower bounds for all
constraints. The global lower bound is passed up to the root node
of the pseudo-tree. However, as shown in 3.1, the direction of the
projection for back edges is different between the proposed method
and the DP2. Therefore the estimated lower bound is different in
some cases.

Unconditional soft AC is not useful when original lower bound
values of costs are zero. In such cases of problems we might use
some add-on conditional arc consistency techniques.

6. CONCLUSIONS
We proposed an efficient preprocessing method that applies di-

rected soft arc consistency to distributed constraint optimization
problems. In the proposed method, directed soft arc consistency is
performed along the pseudo-tree in a bottom up manner. Using the
pseudo-tree based directed arc consistency enforcemnt, the origi-
nal problem is converted to an equivalent problem. The equivalent
problem is efficiently solved using common search algorithms. The
results of our experiments show that the proposed method is more
efficient than previous methods that estimate lower bound of costs.
Moreover, the proposed method is efficient for approximation al-
gorithms that use bounded errors. Applying more efficient soft arc
consistency, more detailed analysis of the effect of the proposed
method for various types of algorithms and problems will be in-
cluded in our future work.
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