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Abstract

Peer-to-peer (P2P) file sharing has become increasingly popular, accounting for as much as
70% of Internet traffic by some estimates. Recently, we have been witnessing the emergence of
a new class of popular P2P applications, namely, P2P audio and video streaming. While tra-
ditional P2P file distribution applications target elastic data transfers, P2P streaming focuses
on the efficient delivery of audio and video content under tight timing requirements. In these
applications, each node independently selects some other nodes as its neighbors and exchanges
streaming data with neighbors. In this dissertation, we propose and investigate a full dis-
tributed, scalable, and cooperative protocol for live video streaming in an overlay peer-to-peer
network. Our protocol, termed P2P Unstructured Live Media Streaming (PALMS), makes use
of combination of push-pull scheduling methods to achieve high performance (in term of delay,
stream continuity, cooperation, etc.). In live P2P streaming, the media stream is a continuous
flow of media data encoded from the streaming server. Media content generated must be de-
livered to participating nodes under a tight time constraint. Nodes should be able to receive
media content before the playout deadline or the media content will be considered obsolete and
discarded. To address these problems, we propose two methods that are built on an unstruc-
tured overlay network. Our first method is based on the combination of push-pull scheduling
methods that effectively enhances the delivered streaming quality. Our second method is the
extension of the first method which is based on two-layer super-peers unstructured overlay net-
work that consists of super-peers and ordinary peers. The main contribution of our proposed
methods is that it effectively reduces the end-to-end streaming delay and in turn results better
delivered quality. Furthermore, with the implementation of two-layer based overlay network
that consists of super-peers and ordinary peers, PALMS is able to leverage on the heterogene-
ity of bandwidths and simplify the complexity of transmission service with the existence of
super-peers and in turn shows better Quality of Service (QoS). We extended PALMS’s push-
pull protocol into two-layer super-peer based overlay streaming network - PALMS-SP. The
super-peer approach is able to organize the P2P overlay as a trade-off solution that merges
the client-server model relative simplicity and the P2P autonomy and resilience to crashes.
We have extensively evaluated the performances of PALMS and PALMS-SP. Our experiments
demonstrate that PALMS and PALMS-SP achieve good streaming quality. We believe that our
proposed methods are viable and efficient methods for adaptive Internet live media streaming
application. In the future, we can expect to see a greater proliferation of Internet live media
streaming applications that is leverages on the power of connected computers and Internet’s
capabilities.
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CHAPTER 1

Introduction

Failure is the opportunity to begin again,
more intelligently.

Henry Ford.

Peer-to-peer (P2P) file sharing has become increasingly popular, accounting for as much as
70% of Internet traffic by some estimates. Recently, we have been witnessing the emergence of
a new class of popular P2P applications, namely, P2P audio and video streaming. While tra-
ditional P2P file distribution applications target elastic data transfers, P2P streaming focuses
on the efficient delivery of audio and video content under tight timing requirements. Still in
its infancy, both live and on-demand P2P streaming have the potential of changing the way we
watch TV, providing ubiquitous access to a vast number of channels, personalizing your TV
experience, and enabling roaming TV services. For a long time, traditional approaches that are
client/server based e.g., Akamai [aka] have been used for streaming multimedia applications
over the Internet.

Over the past few years, P2P networks have emerged as a promising approach for dis-
tribution of multimedia content over a network. Some P2P network related research is by
the following authors [GST03], [HHR+03], [PWC03], [YM04], and [ZLLY05]. One form of
P2P network, the peer-to-peer overlay, offers a promising approach to support one-to-many
multimedia streaming applications without any special support from the network, called P2P
streaming. The basic building blocks for P2P streaming, called nodes or peers, are no longer
passive receivers of data but can act both as clients and servers at the same time. Stream
data are simultaneously received, played, and passed to other connected peers. The goal of
P2P streaming mechanisms is to maximize delivered quality to individual peers in a scalable
fashion despite the heterogeneity and asymmetry of their access link bandwidth. An effective
P2P streaming mechanism depends on the effective utilization of the outgoing bandwidth of
most participating peers.

This dissertation is an effort to overcome the problem of delivering live streaming media
to potentially large number of concurrent clients. Our solution emphasizes on the building an
adaptable system for live media streaming. We address two key challenges: the design of a
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Figure 1.1: An overlay multicast for a P2P media streaming system.

live media streaming system and a set of protocols for efficient live media streaming and good
Quality of Service (QoS) of delivered media.

1.1 Motivation

In the last few years, the Internet has been used for an increasing amount of traffic stemming
from the emergence of multimedia applications which use audio and video streaming. This
increase is expected to continue and be reinforced since access technologies such as Asymmetric
Digital Subscriber Line (ADSL) and cable modems enable residential users to receive high-
bandwidth multimedia streams. One specific application which will be enabled by future access
technologies is live media streaming. Live media streaming allows users to watch a certain video
in real time. The challenges of providing live media streaming in the Internet are manifold and
require the orchestration of different technologies.

In live media streaming, the media stream is a continuous flow of media data encoded from
the streaming server. Media content generated must be delivered to participating nodes under
a tight time constraint. Nodes should be able to receive media content before the playout
deadline or the media content will be considered obsolete and discarded. The key challenges
for a peer in P2P live media streaming applications include:

1. locate supplier peers with the desired media segments/packets before the playout time
deadline

2. choose supplier peers that are likely to provide good performance for playback

3. manage parallel download and upload to connected neighbor nodes

4. managing the connections with connected peers in the network due to the dynamicity of
peers joining and leaving
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1.2 Objectives

The main objective of this dissertation is to “design bandwidth scalable, robust real-time multi-
media streaming overlay P2P protocols for the best-effort Internet.” In order to make this goal
manageable, we identified a number of sub-problems and objectives that naturally lead to the
solution of the main problem:

• carry out an extensive performance study of constant-bitrate video streaming in the
existing Internet and apply the learned lessons to the design of our streaming protocols;

• analyze the scalability of rate-based congestion control in real-time applications and de-
sign new methods that can scale to a large number of users;

• study the performance of real-time end-to-end bandwidth estimation methods and their
applicability to multimedia streaming and congestion control.

1.3 Contributions

The major contributions of this dissertation are as follows. We propose an overlay peer-to-peer
unstructured streaming model, which works as the unified framework for various overlay based
streaming applications. Our application example in this dissertation is the live multimedia
distribution. Based on our results obtained from simulations and testing, we exhibit the great
potential of overlay-based solution at saving server load and network bandwidth consumption
compared to IP-multicast-based solutions. We note that such a foundation works for all kinds
of distribution applications such as large-volume file downloading, teleconferencing, etc. Our
proposed algorithms can also be employed as part of the evaluation tools to study interesting
questions such as the impact of IP routing at constraining the maximum throughput of overlay
multicast.

1.4 Topics not covered in this dissertation

Peer-to-peer systems is a recent topic and many new issues arise, as many new possibilities
are being discovered, evaluated and tested. There are at least two topics that we consider
important in regard of P2P networks, but not covered in this dissertation:

• Security: We do not cover basic security services in Peer-to-Peer networks. The tech-
niques that allow avoiding the pernicious effects of a badly behaving (possibly colluding)
group of peers are out of the scope of this work. However, where possible, we succinctly
address some security issues by suggesting how the P2P system may detect uncooperative
peers. The absence of a centralized point of failure in a P2P network makes impossible a
centralized trusted third party (e.g., a certification authority), which is the base for clas-
sic authentication, non-repudiation and confidentiality in the Internet [MOV96], [Sch95].
There are efforts to distribute the certification authority among a number of machines
through threshold cryptography. Threshold cryptography allows for the cooperative ver-
ification of a signature by different collaborative entities, making the collusion among
peers more difficult to some extent. EigenTrust [KSGM03] is a distributed approach for
peer reputation in a given P2P system.

• Copyright: Copyright law applies to virtually every form of expression that can be
captured (or, to use the copyright term of art, “fixed”) in a tangible medium, such as
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on paper, film, magnetic tape, hard drive, optical media, or (arguably) in RAM. Songs,
books, photographs, software, and movies are all familiar examples of copyrighted works.
Copyright law reserves certain rights exclusively to the owner of the copyright, including
the rights to reproduce, distribute, and publicly perform the work.

The nature of file-sharing technology inevitably implicates copyright law. First, since
most digital files are “fixed” for purposes of copyright law (whether on a hard drive, CD, or
possibly in RAM), the files being shared generally qualify as copyrighted works. Second,
the transmission of a file from one person to another generally results in a reproduction.
Copyright owners have also argued that digital transmissions can qualify as a distribution,
and possibly a public performance (in the world of copyright law, “public performance”
may include the act of transmitting a copyrighted work).

There have been three major court opinions that have applied indirect liability theories to
companies that distribute P2P software: A&M Records v. Napster [nap], In re Aimster
Copyright Litigation [aim], MGM v. Grokster [mgm]. Unfortunately, these three cases
are not entirely consistent in their analyses. The law continues to evolve, and other courts
may further muddy the waters in the years to come.

The legal issues associated with P2P are quite complex and need to be dealt with on
an international scale. There are millions of people with access to the Internet who
could all potentially use some P2P technology to directly infringe copyright law and
there appears to be quite a large group who do. So it would be a huge task for any
artist/retailer/company or even a group of such people to get such a large number of
people convicted of copyright infringement.

1.5 Dissertation outline

This research produced several conferences and journal papers and this work is a compilation
of those papers’ propositions and results. The papers’ material was rearranged in a more
comprehensive order and a more extensive review of the literature was made.

Chapter 2 presents a review about the basic concepts of streaming protocols. Basic concepts
of network model and overlay graph are given to clarify the notation and give the definition of
the theorems and rules used along the paper, as well as to introduce about streaming related
works and problems. Finally, the technical challenges and research opportunities are presented
at the end of the chapter.

Chapter 3 overview of the proposed P2P Unstructured Live Media Streaming (PALMS)
architecture. We discuss the various components that form the foundation of distributing live
media streaming over unstructured P2P networks. We continue the discussion of the pros and
cons of the PALMS distribution model and present the details of some of the components that
underlie the architecture.

In order to clarify the experimental framework and simulation setup used in the following
chapters, chapter 4 describes the simulation setup, simulation parameters and performance
metrics used along the experiments on the following chapters.

Chapter 5 presents the results of simulations on PALMS. We examine the impact of hetero-
geneous bandwidth and free-riders on the performance of PALMS streaming. We also study the
three performance metrics of interest: Delivery quality, Delivery latency and Data overheads.
We compare the streaming performance of PALMS with other existing streaming systems.

As the main modification presented in chapter 6 is the introduction of two-layer super-peer
overlay network, PALMS-SP. With the addition of super-peers layer and ordinary peers layer,
the super-peer approach is able to organize the P2P overlay as a trade-off solution that merges
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the client-server model relative simplicity and the P2P autonomy and resilience to crashes.
Simulations experiments were conducted and a comparison of the effectiveness and streaming
quality of PALMS and PALMS-SP with other existing streaming protocols. Based on the
results, the performances of PALMS-SP using the two-layer super-peer overlay network deliver
better streaming quality and more robust.

Finally, chapter 7 presents the main conclusions of this research, discuss the experimental
results presents suggestions for future work. ¤





CHAPTER 2

Background and Related Works

The whole problem with the world is that
fools and fanatics are always so certain of themselves,

but wiser people so full of doubts.
Bertrand Russell.

In this chapter, we first provide background information about the basic concepts and termi-
nology of peer-to-peer (P2P) networking, as a preface for understanding how P2P Unstructured
Live Media Streaming (PALMS) is able to provide better solution for streaming multimedia
over the Internet. Next, we discuss the challenges of streaming service over P2P networks as
they inherent instability and unreliability. Finally, we look at several streaming protocols and
projects that have been proposed as P2P overlay streaming.

2.1 Basic Concepts and Terminology

Although basic knowledge in networks is a basic requirement for the network studies, terms
and concepts are lost or misunderstood when classification algorithms are naively applied. This
section do not intend to deeply explain statistics, but to refresh and clarify those concepts in
order to facilitate the comprehension of the further chapters.

2.1.1 Network Model

We consider a network (V, L), where V = {v1, v2, ..., v|v|} represents the set of nodes. L is
the link set, where l = (va, vb) ∈ L represents a physical link from node va to vb. We assume
each physical link to be directed, which is the case for most real networks. However, all the
algorithms presented in this proposal also apply for the undirected network model.

Consider k multicast sessions M1,M2, ..., Mk. Each session Mi ⊆ V . It consists of one server
S(Mi) and several receivers R1(Mi), R2(Mi), ..., R|Mi|−1(Mi). Normally, receivers grouped in
one session have common interests with the data disseminated by the server. A network node
vi ∈ V can belong to several sessions.
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2.1.2 Overlay Graph

Definition

Within each session Mi, an overlay graph Gi = (M i, ξi) is formed. Gi is a directed virtual
graph, where an edge e = (Rm(Mi), Rn(Mi)) ∈ ξi represents a data relay path from Rm(Mi)
to Rn(Mi). The path corresponds to the unicast route between these nodes in the physical
network L. The edge weight of e represents various metrics of this route, e.g., communication
cost, available bandwidth, traffic amount, under different application settings. An overlay
graph can take the following forms:

• Complete Graph. If the physical network L is not partitioned, there exists a route
between any pair of nodes, which indicates that a node can relay data to any other
nodes of the multicast session, except for the sender. Therefore, the overlay graph can
be a complete graph. Such a graph configuration suits well for scenarios where richly
connected overlay paths are required, and the session size is limited, such as resilient
routing [ABKM01].

• Overlay Mesh. Since maintaining a complete graph is not scalable as the size of the
multicast session increases, one can choose to construct the overlay graph as only a
subgraph of the complete graph, i.e., a mesh [CRZ00].

• Data Dependency Graph. In previous overlay graph examples, an edge exists be-
tween two nodes simply because we can physically transfer data from one to another.
Such a definition is suitable for application scenarios where distribution is simultaneous,
such as live broadcasting, teleconferencing, etc. In other scenarios where distribution is
asynchronous, such as peer-to-peer file sharing or on-demand streaming, there exists a
data path from node Rm to Rn, only when the data requested by Rn is locally available
at Rm. In this case, the edge (Rm, Rn) not only represents the data path, but also the
data dependency relation between Rm and Rn.

2.1.3 Overlay Graph Management

The overlay graph changes dynamically: (1) when a new receiver arrives, a new node is inserted
into the graph; (2) when a receiver quits, its corresponding node is removed from the graph. The
management of overlay graph can be centralized or distributed. In the centralized approach, the
manager node of the multicast session, normally the server, has the global view of the overlay
graph. In order to maintain such a global view, each new node joining the multicast session
must report to the server. In return, the server feedbacks to the new node with information
of existing nodes in the overlay graph, and arbitrate the joining node to setup new edges with
all, or some of them. Likewise, when a node leaves the multicast session, or fails, the server
must be notified to remove edges attached to this node. In the distributed approach, each
node only maintains information of its overlay graph neighbors. Nodes are interconnected via
various distributed routing mechanisms, such as link-state protocol, distributed hash table, etc.
These mechanisms can effectively capture and propagate the dynamic change (node joining and
leaving) of the overlay graph to its members.

2.1.4 Peer-to-Peer System

P2P systems build on many concepts from the area of distributed systems: Algorithms for
redundancy, load balancing, overlay networks or resilience are used as building blocks of these
systems. However in what sense are these P2P systems that are considered to be new?. What
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Figure 2.1: The Peer-to-peer Protocol Stack.

are the new characteristics that make them different enough so as to treat them separately
from existing distributed systems?.

Systems behaving in a peer-to-peer fashion pre-existed the applications we call Peer-to-
Peer today. In the very beginning of the Internet, all computers were peers, because no
Domain Name System (DNS) existed and a host had to know another in order to establish a
communication with the latter. So there are so much of talks and researches related to P2P
these days?. This is because the kind of systems we consider in this thesis could not have
been imagined when that primitive “Peer-to-Peer” Internet existed. Only today we can start
to build systems of millions of interconnected hosts. P2P systems are a consequence of the
development of the Internet.

It is only nowadays that such a system is feasible. As such, peer-to-peer systems present
their own characteristics:

• They are composed of a very large number of hosts, and thus their properties must scale
gracefully with an increasing number of participants. Millions of users can be considered
a normal scenario

• The computing infrastructure is provided by the users’ machines, which can be powerful
but often unreliable. Commodity hardware is assumed for all the participating machines.
Any given machine (peer) can fail or disconnect at any point in time.

• We consider the justification of the requirement for a minimum bandwidth for some P2P
applications to work. However, for most or all peers, bandwidth should be treated in gen-
eral as a scarce resource. Thus a sense of economy must be applied to all communication
not involving the actual exchange of information among users.

• Users are rational. They know that they must collaborate in order to benefit from the
system. However, most users will not offer resources without an interest motivating them.
In real life P2P networks, a few peers offer resources just for the sake of it, while others
may not collaborate at all. In the middle of this range of behaviors we find normal users,
which cooperatively build the common infrastructure, motivated by their own interest.

In general, a P2P system is (roughly) composed of a substrate to allow communication
among peers, the algorithms locate resources, and an application running on top of the dis-
tributed environment. We now define the key elements in a P2P network.
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In figure 2.1 we see a detailed P2P protocol stack. Note that all the P2P layers are situated
at the application layer of the OSI model. Note that the P2P network is formed by two closely
related layers: the Overlay Network and the P2P Services. The P2P network is formed by two
closely related layers: the Overlay Network and the P2P Services.

• Overlay network: An Application-level routing scheme among the nodes of a distributed
application. Packets traveling from one node to another are routed by the network layer
(OSI level 3), but the routing decision (i.e., which is the destination node at each hop) is
explicitly made at the application level on each end node. This is the reason why overlay
networks are also called Application-level networks. A solid example is the Resilient
Overlay Network (RON) [ABKM01] : a group of multi-homed nodes assure continuous
communication even in the presence of network failures, by routing packets through an
application-level overlay path that avoids the failed network or link. Overlay networks
are often represented by a directed graph (X; U), where X is the set of end nodes in the
overlay and U is the set of application-level links among the nodes in X. The (X; U)
graph is required to be connected.

• P2P Services: Functionality provided by the P2P network for the applications sitting
on top. Each instance of a distributed application on each peer interacts with the other
instances on other peers through the API offered by the P2P services. Examples of the
functions in this API are join a P2P network, or look-up that finds the peer responsible
for a given resource in the P2P network.

2.2 Problem Overview

In recent years, Peer-to-Peer (P2P) networking technology has gained tremendous attention
from both academy and industry. In a P2P system, peers communicate directly with each
other for the sharing and exchange of data 1 as well as other resources such as storage and
CPU capacity, each peer acts both as a client who consumes resources from other peers, and
also as a server who provides service for others. P2P systems can benefit from their follow-
ing characteristics: adaptation, self-organization, load-balancing, fault-tolerance, availability
through massive replication, and the ability to pool together and harness large amounts of
resources. For example, file-sharing P2P systems distribute the main cost of sharing data -
bandwidth and storage - across all the peers in the network, thereby allowing them to scale
without the need for powerful and expensive servers. However, providing streaming service over
P2P networks is still a challenging task because of their inherent instability and unreliability.
The two major challenges in providing P2P media streaming are locating supplying peers and
maintaining content delivery paths.

2.2.1 Video Streaming Application Background

Streaming is defined as “technique for transferring data (usually over the Internet) in a continu-
ous flow to allow large multimedia files to be viewed before the entire file has been downloaded
to a client’s computer” [ANS]. Prior to the availability of streaming technique, multimedia
content was distributed no differently than any other ordinary files (i.e. text files, executable
files). They were all transmitted as “files” using downloading protocols such as ftp and http.
Due to the large volume of data associated with a typical multimedia file, a long transmission

1for example, see http://www.bittorrent.com
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time as well as a large storage space were required before the playback could begin. Further-
more, there was no way for the users to “peek” into the content to see if it is the video they
would like to watch. This was often inconvenient, if not unacceptable, to the users due to a
long waiting time and a large amount of wasted resources when the content of the video turned
out to be something they were not interested in.

Streaming enables near instantaneous playback of multimedia content regardless of their
sizes. It is made possible by a steady transmission of data packets in such a way that the
users will receive the needed packets moments ahead of the time they must be played back.
Streaming reduces the storage space and allows users to “quit” receiving the stream, if not
interesting or satisfactory, before the entire file is downloaded.

Streaming media also enables real-time and continuous delivery of video and audio data in a
fashion of “flow”, i.e., once the sender begins to transmit, the receiver can start playback almost
at the same time while it is receiving media data from the sender, instead of waiting for the
entire media file to be ready in the local storage. Unlike normal data file, a streaming media
file is huge, thus requires high channel bandwidth. Moreover, streaming media also carries
stringent demand in the timing of packet delivery. Live streaming captures audio/video signals
from input devices (e.g. microphone, video camera), encodes the signals using compression
algorithms (e.g. MP3, MPEG-4), and distributes them in real-time. Typical application of live
streaming includes surveillance, broadcasting of special events, and distribution of information
that have the prime importance in real-time delivery. In live streaming, the server side has the
control over the selection of the distribution content and the timing of their streaming. The
user involvement is typically limited to joining and leaving the running streaming sessions.

Pre-recorded or stored streaming distributes pre-encoded video files stored at a media server.
Sample applications include multimedia archival retrievals, news clip viewing, and distance
learning through which students attend classes on-line by viewing pre-recorded lectures. Under
stored streaming, when and what title of the video will be streamed are dictated by the user.
As such, a great amount of load may be placed on the media server when supporting a large
number of asynchronous users (i.e. users whose streaming requests arrive at different times)
with diverse interests. Our research focuses on the support of stored streaming.

Streaming brings new challenges to the distribution of multimedia content. Due to its
strict on-time delivery requirement of data packets, a mechanism is needed to regulate the
flow of packets over the Internet. An active research has been conducted in the areas of rate
control, to cope with the time-varying bandwidth availability of Internet [VChS03], [TZ99],
buffer management, to overcome delay variations [KSG02], and error control, to reduce the
impact of packet loss. Progress in standardization work has produced specifications on key
aspects of streaming, such as media encoding [LBCL99], media transport and session control,
and media description and announcement.

2.2.2 Multimedia Streaming over TCP/IP

Standard networking applications like email or FTP, which only need reliable non-realtime data
transmission, are using TCP on top of lossy IP networks. TCP countervails the problems of the
underlying network layers by most notably implementing congestion control and guaranteed
retransmission. As an example, for a file transfer it is acceptable, that the amount of time used
for this transfer is determined by the available bandwidth. So it will take longer to transfer
the same amount of data over a low bandwidth link than over a faster connection.

For multimedia streaming, a stream with a certain bandwidth requirement should ideally
never suffer from lacking bandwidth. If it is subjected to a sudden bandwidth reduction and
no measures are taken to prevent such a case, the client application stops playing and has to
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Figure 2.2: An overlay multicast for a P2P media streaming system.

refill the buffer again. TCP, when used for multimedia streaming and subjected to packet loss,
sacrifices bandwidth for retransmission, even though some retransmitted packets would be late
anyway. Further, TCP congestion control reacts with heavy and discontinuous reduction of
the available streamout rate, which also wastes available bandwidth. Multimedia streaming
environments cannot compensate those heavy and frequent fluctuations over a longer period of
time without running out of buffer sooner or later.

Although attempts were made to use TCP/IP for multimedia streaming [KLW01], [GAA03]
the widely accepted approach is to use the real-time transport protocol (RTP [SC96]) on top
of UDP/IP, which circumvents most of TCP’s unwanted behavior. Using recently introduced
extensions on RTP retransmission of lost packets [RLM+02] and more immediate RTP feedback
about network behavior [OWS+02], an intelligent server-client software like the one presented
in this work, will overcome some of the Internet’s deficiencies without suffering from TCP’s
rigid behavior.

Further note that using UDP also offers the possibility of sending data in a multicast
fashion, which means that multiple clients are connecting to the same stream, which hereby
severely decreases the network load. Still, for this work, we want to focus on personalized
video on demand streaming, so each client can start and pause its stream at will, which is only
functional with the unicast scenario.

2.3 Recent Progress of P2P Media Streaming

A simple and straightforward way of P2P streaming implementation is to use the technique of
application-layer multicast (ALM). With ALM, all peer nodes are self-organized into a logical
overlay tree over the existing IP network and the streaming data are distributed along the
overlay tree. The cost of providing bandwidth is shared among the peer nodes, reducing the
burden of the media server. In application-layer multicast, data packets are replicated and
forwarded at end hosts, instead of at routers inside the network. Compared with IP multicast,
application-layer multicast has several advantages. On the one hand, since there is no need for
supports from routers, it can be deployed gradually based on the current Internet infrastructure;
on the other hand, application-layer multicast is more flexible than IP multicast, and can adapt
different distribution demands of various upper level applications.

Thus, how to construct and maintain an efficient ALM-based overlay network has became
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Figure 2.3: A simple example illustrating the basic approach of tree-based overlay multicast.

one of the key problems of P2P streaming research. Figure 2.2 shows the structure of an overlay
multicast for a peer-to-peer (P2P) media streaming system. To address this problem, mainly
three questions should be answered. The first relates to the P2P network architecture, i.e.,
what topologies should the overlay network be constructed? The second concerns routing and
scheduling of media data, i.e., once the overlay topology is determined, how to find and select
appropriate upstream peers from which the current peer receives the needed media data? The
third is membership management, i.e., how to manage and adapt the unpredictable behaviors
of peer joining and departure?.

Research has shown that it’s feasible to support large-scale media streaming over the In-
ternet using a P2P approach but such systems still confront some design challenges:

• Dynamic uptime. In P2P networks, peers don’t always stay online in the system. Supply-
ing peers might suddenly crash or leave ungracefully. In this case, the requesting peers
need to find new supplying peers to replace the failed ones. Therefore, the system should
be robust enough to withstand such node failures.

• Limited and dynamic peer bandwidth. Unlike powerful video servers, peers have limited
bandwidth capacities. Each supplying peer might only be able to support a few requesting
peers (or multiple supplying peers are required to support one requesting peer). Also,
the available bandwidth of supplying peers might fluctuate unexpectedly. Hence, the
system should be able to adaptively adjust each supplying peer’s sending rate to keep
the streaming quality at requesting peers unaffected.

To deal with these challenges, researchers have proposed various solutions. From the view
of network topology, current systems can be classified into three categories approximately:
tree-based topology, forest-based (multi-tree) topology, and mesh topology. In the following
we give a brief summarization of P2P streaming techniques according to this classification.

2.4 Tree-based Topology

The most intuitive and common way to deliver multimedia content to a large group of peers
is to build a single multicast tree, in which all interior nodes and leaf nodes are the peers. As
Figure 2.3 shows, an interior node must forward data to other nodes, while a leaf node doesn’t
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need to forward any received data. An overlay tree among peers can be constructed in either
a centralized or distributed manner.

2.4.1 PeerCast

The typical model of tree-based P2P streaming system is PeerCast [DBGM01]. In PeerCast,
nodes are organized as a single multicast tree, where the parent provide service only directly
to its sons. The node joining and departure strategies used in PeerCast are simple. For node
joining, a new node n first request services from the root node S. If the S has enough resources,
it provides service for n directly; otherwise, S redirects the request of n to one of its sons. The
son then repeats this process, until the parent of n is found. Since each node only maintains
the information of its parent and sons, unbalanced tree may be constructed.

Generally, there exist four route selection strategies in PeerCast: random selection, round-
robin selection, smart selection according to physical placement, and smart selection according
to bandwidth. To achieve a balanced multicast tree, custom routing policy should be chosen
carefully for individual peer node.

2.4.2 Overcast

Overcast [JGJ+00]is designed to offer an on-demand delivery of non-interactive, bandwidth
demanding, video streaming service to a self-similar community of users through overlay net-
work based multicast. The design goal of Overcast is to build single source multicast trees
that maximize bandwidth availability from the root to each overlay node without knowing the
details of the underlying network topology. It also tries to respond quickly and efficiently to
transient network failures and congestions in the underlying network. Through a centralized
lookup mechanism, a client wishing to receive a video streaming service finds a root node of
a multicast tree that distributes a desired content. The client requests the root node to help
measure the available bandwidth between the client and the root on a direct connection and
saves it as a nominal download bandwidth. The client also requests the root node for a list
of children nodes and their descendant nodes that are attached to the root node. The client
checks the availability of bandwidth from the root through each one of every descendants and
determines which overlay nodes can offer the same amount of bandwidth as the nominal down-
load bandwidth. The most distant node, in terms of tree hierarchy, from the root that satisfies
the bandwidth requirement will be selected as the node to which the client will attach itself in
the multicast tree. On-demand service is supported by the notion of archive. Each overlay node
buffers data it forwards in archive and distributes the archival index to participating overlay
nodes in a multicast tree. A user can request the starting point, such as the beginning, when
it joins an archival group of a particular tree. Since root node holds both the content as well
as the distribution tree information, communication failures (e.g. link down, root node down)
can jeopardize the entire distribution system. To cope with this problem, Overcast performs
root node replications and forwards the streaming requests to replicated nodes in round-robin
fashion. It also employees a series of replication nodes cascaded in front of the root node so
that any one of them can overtake the responsibility of the root if necessary. In order to cope
with non-root node failures, each child node maintains a list of ancestors so it can attach to a
next higher level parent.

2.4.3 NICE

Peers in NICE [BBK02] systems cooperatively organize themselves into a logical hierarchy
of clusters. As Figure 2.4 shows, clusters are managed into multiple levels using distributed
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Figure 2.4: A hierarchical overlay approach for P2P Streaming.

algorithms. Each cluster has a cluster leader that’s responsible for monitoring its cluster
membership and is a member of a cluster in the upper level. Hence, some peers are cluster
leaders in multiple levels. Cluster sizes can be between k and 3k (k is a system parameter)
and are maintained using merge and split algorithms for bounding the out-degree of each peer.
There’s only one cluster in the topmost level where the source of the media resides.

To join the system, a newcomer first contacts the rendezvous point (the leader of the
topmost cluster in Figure 2.4, labeled “F”). With that cluster’s peer list attached in the
leader’s reply, the newcomer measures the distances between itself and all the peers in the
list. Then, it selects the closest peer, which is a cluster leader in the lower level. After that,
the newcomer sends another request to that leader. Again, that closest leader replies with
its cluster member list. The probing process repeats until the new client finds its appropriate
position in the architecture. By this successive probing, nearby peers are grouped together,
making the data transmission based on that structure efficient.

This approach distributes the peer-management load over all the system’s peers. For exam-
ple, in contrast to O(N) states maintained by the central server in a directory-based scheme,
each peer in Zigzag only maintains O(log N) states. It also eliminates the single point of fail-
ure. Because the searching is based on the overlay structure, the maintenance of the structure
among peers is critical to the searching performance. The control protocol for overlay main-
tenance hence must be resilient to node failure. In NICE, for instance, members in the same
cluster periodically exchange heartbeat messages to detect member failure. However, such
maintenance protocols can complicate the system implementation.

2.4.4 ZigZag

ZIGZAG [THT04] is another tree-based P2P streaming system which can construct more bal-
anced multicast tree. As shown in Figure 2.5, ZIGZAG organizes receivers into a hierarchy of
bounded-size clusters and builds the multicast tree based on that. The connectivity of this tree
is enforced by a set of rules, which guarantees that the tree always has a height O(logk N) and
a node degree O(k2), where N is the number of receivers and k is a constant. Furthermore,
the effects of network dynamics such as unpredictable receiver behaviors are handled grace-
fully without violating the rules. This is achieved requiring a worst-case control overhead of
O(logk N) for the worst receiver and O(k) for an average receiver.

Other tree-based P2P streaming systems also include Overcast [JGJ+00], and Bayeux
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Figure 2.5: Administrative organization of Zigzag peers.

[ZZJ01].
Nevertheless, a tree-based structure suffers from several disadvantages:

• It isn’t fair. All the leaf nodes don’t need to forward data, but interior nodes are required
to forward data to at least two children nodes (otherwise, the data paths become long).
The number of leaf nodes increases much faster than the number of interior nodes. Due
to the fact that there is only the interior nodes carry the forwarding load, the system
load distribution becomes unbalanced.

• It’s fragile and prone to severe service disruption. Each node is connected to its only
parent with a single link. If the parent suddenly halts or the link is broken because of
congestion, the child node and all its descendants immediately suffer from data shortage
(that is, a buffer underflow) and a recovery scheme becomes necessary.

• An interior node might not be able to offer high bandwidth video streaming to its children
because of its limited bandwidth. Furthermore, bandwidth is guaranteed to be monoton-
ically decreasing as it goes down the tree; therefore, a node many hops away from the
source might not receive enough bandwidth even though its parent has large outgoing
bandwidth. Besides, for interactive VOD systems, it’s even more challenging to maintain
the overlay tree due to frequent VCR operations. Hence, supporting efficient interactive
VOD streaming in P2P networks is still an active research topic.

Due to these weaknesses, the tree-based multicast approach is only suitable to small group
streaming applications such as videoconferencing or multiparty gaming.

2.5 Forest-based Topology

Conventional tree-based multicast is inherently not well matched to a cooperative environment.
The reason is that in any multicast tree, the burden of duplicating and forwarding multicast
traffic is carried by the small subset of the peers that are interior nodes in the tree. Most of
the peers are leaf nodes and contribute no resources. This conflicts with the expectation that
all peers should share the forwarding load.

To address this problem, forest-based architecture is beneficial, which constructs a forest of
multicast trees that distributes the forwarding load subject to the bandwidth constraints of the
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Figure 2.6: A simple example illustrating the basic approach of forest-based overlay multicast.

participating nodes in a decentralized, scalable, efficient and self-organizing manner. Figure
2.6 shows the basic approach of forest-based overlay multicast.

2.5.1 SplitStream

A typical model of forest-based P2P streaming system is SplitStream [CDK+03]. Figure 2.7
shows the basic approach of SplitStream. The key idea of SplitStream is to split the original
media data into several stripes, and multicast each stripe using a separate tree. Each of the
stripes has an identifier stripe ID starting with a different digit. Each stripe is multicast in
its own designated tree. Peers join as many trees as there are stripes they wish to receive and
they specify an upper bound on the number of stripes that they are willing to forward. To
achieve better forwarding load balancing among nodes, SplitStream assigns each node to be
an internal node at most in one overlay tree and leaf nodes in all other trees. It uses Pastry, a
DHT protocol, to locate parents and assign positions of nodes in each tree.

A node’s parent in a tree is the first node in the routing path from that node to the node
with a node ID equal to the tree’s stripe ID. Hence, the DHT routing protocol (Pastry) [RD01]
intrinsically determines the locations of each node’s parents in SplitStream. The multicast
tree is then implicitly constructed by merging the paths from all the nodes to the root. This
algorithm can potentially violate the degree bounds of interior nodes, and SplitStream applies
several heuristic methods to redistribute the data-forwarding load among nodes. Using DHT
protocol to locate supplying peers takes advantage of well-developed DHT protocols, which are
scalable and offer good load balancing.

The challenge is to construct this forest of multicast trees such that an interior node in one
tree is a leaf node in all the remaining trees and the bandwidth constraints specified by the
nodes are satisfied. This ensures that the forwarding load can be spread across all participating
peers. For example, if all nodes wish to receive k stripes and they are willing to forward k
stripes, SplitStream will construct a forest such that the forwarding load is evenly balanced
across all nodes while achieving low delay and link stress across the system.

Striping across multiple trees also increases the resilience to node failures. SplitStream
offers improved robustness to node failure and sudden node departures like other systems that
exploit path diversity in overlays. SplitStream ensures that the vast majority of nodes are
interior nodes in only one tree. Therefore, the failure of a single node causes the temporary
loss of at most one of the stripes (on average). With appropriate data encodings, applications
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can mask or mitigate the effects of node failures even while the affected tree is being repaired.
Besides SplitStream, there are many other forest-based systems. Examples include building

mesh-based tree (Narada and its extensions and Bullet [KRAV03]), leveraging layered coding
(PALS [RO03]), and multiple description coding (CoopNet [PWCS02]).

2.6 Mesh Topology

In conventional tree-based P2P streaming architectures, at the same time a peer can only
receive data from a single upstream sender. Due to the dynamics and heterogeneity of network
bandwidths, a single peer sender may not be able to contribute full streaming bandwidth to a
peer receiver. This may cause serious performance problems for media decoding and rendering,
since the received media frames in some end users may be incomplete.

In forest-based systems, each peer can join many different multicast trees, and receive data
from different upstream senders. However, for a given stripe of a media stream, a peer can
only receive the data of this stripe from a single sender, thus results in the same problem like
the case of single tree.

Multi-sender scheme is more efficient to overcome these problems. In this scheme, at the
same time a peer can select and receive data from a different set of senders, each contributing
a portion of the streaming bandwidth. In addition, different from the multi-tree systems, the
sender set members may change dynamically, due to their unpredictable online/offline status
changes, and the time-variable bandwidth and packet-loss rate of the Internet. Since the data
flow has not a fixed pattern, every peer can send and also receive data from each other, thus the
topology of data plane likes mesh. The main challenges of mesh topology are how to select the
proper set of senders and how to cooperate and schedule the data sending of different senders.
Figure 2.8 illustrates the example of a mesh topology network.

Examples of mesh-based multi-sender P2P streaming system include CollectCast [HHR+03],
GnuStream [JDXB03], and DONet (CoolStreaming) [ZLLY05].

2.6.1 CollectCast

CollectCast puts its emphasis mainly on the judicious selection of senders, constant monitoring
of sender/network status, and timely switching of senders when the sender or network fails or
seriously degrades. CollectCast operates entirely at the application level but infers and exploits
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properties (topology and performance) of the underlying network. Each CollectCast session
involves two sets of senders: the standby senders and the active senders. Members of the two
sets may change dynamically during the session. The major properties of CollectCast include
the following: (1) it infers and leverages the underlying network topology and performance
information for the selection of senders. This is based on a novel application of several networks
performance inference techniques; (2) it monitors the status of peers and connections and reacts
to peer/connection failure or degradation with low overhead; (3) it dynamically switches active
senders and standby senders, so that the collective network performance out of the active
senders remains satisfactory.

2.6.2 GnuStream

GnuStream is a receiver-driven P2P streaming system which is built on top of Gnutella. It
features multi-sender bandwidth aggregation, adaptive buffer control, peer failure or degrada-
tion detection and streaming quality maintenance. GnuStream is aware of the dynamics and
heterogeneity of P2P networks, and leverages the aggregated streaming capacity of individual
peer senders to achieve full streaming quality. GnuStream also performs self-monitoring and
adjustment in the presence of peer failure and bandwidth degradation.

GnuStream has the following salient features:

• Integration with P2P lookup substrate: GnuStream leverages Gnutella as its lookup
substrate, making it readily deployable in the current Gnutella P2P network environment.

• Multi-sender aggregation: Instead of relying on one single sender, GnuStream dis-
tributes streaming load among multiple peer senders.

• Receiver data collection: The receiver coordinates the arrival of different media data
segments, and reconstructs media data in their original and continuous order before
feeding them to the media player.

• Detection of peer status change: GnuStream uses periodic probing and soft states
to detect any changes in the status of peer senders, including peer disconnection, failure,
and bandwidth degradation.
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• Recovery from failure or degradation: If a current peer sender is detected as suf-
fering from failure or bandwidth degradation, GnuStream will migrate all or part of its
streaming load to another peer sender or a standby peer sender.

• Buffer control: To accommodate the dynamic set of peer senders and the end-to-end
network congestion, GnuStream implements a suite of buffer control mechanisms which
involves more concurrency and scheduling complexity than the traditional buffer control
mechanisms in client-server streaming.

2.6.3 CoolStreaming/DONet

Recently, CoolStreaming/DONet implemented a multi-sender model by introducing a simpler
and straightforward data-driven design, which does not maintain an even more complex struc-
ture. The core of DONet is the data-centric design of streaming overlay, and the Gossip-based
data schedule and distribution algorithm.

In DONet system, the video stream is divided into segments of uniform length, and the
availability of the segments in a node’s buffer is represented by a buffer map (BM). Figure 2.9
illustrates the architecture of DONet node buffer map. Each node continuously exchanges its
BM with other peers (or partners). Upon the receipt of BMs from multiple partners, the node
assigns the requested data segments to each of the partners according to their data availability
and available uploading bandwidth.

In the data-centric design of DONet, a node always forwards data to others that are ex-
pecting the data, with no prescribed roles like father/child, internal/external, and upstream-
ing/downstreaming, etc. In other words, it is the availability of data that guides the flow
directions, while not a specific overlay structure that restricts the flow directions. This data-
centric design is suitable for overlay with high dynamic nodes.

Gossip algorithms have recently become popular solutions to multicast message dissemina-
tion in P2P systems [HHL06]. In a typical gossip algorithm, a node sends a newly generated
message to a set of randomly selected nodes; these nodes do similarly in the next round, and so
do other nodes until the message is spread to all. The random choice of gossip targets achieves
resilience to random failures and enables decentralized operations. Similar to the related work
[GKM03], DONet employs a gossiping protocol membership management. The data schedule
and distribution method used in DONet is also partially motivated by the gossip concept. It



2.7. PROBLEMS RELATED TO LOCATING SUPPLIER PEERS 21

Allow Resilient to Multiple Load Achievable Implementation
Approach Optimization Node Suppliers Balancing Transmission

Failure rate
Tree-based Yes Poor No Medium Medium Easy
Forest-based No Good Yes Good High Difficult
Mesh No Good Yes Good High Easy

Table 2.1: Comparison of between various approaches for content delivery

uses a smart partner selection algorithm and a low-overhead scheduling algorithm to intelli-
gently pull data from multiple partners, which greatly reduces redundancy. Experiments show
that, compared with a tree-based overlay, DONet can achieve much more continuous streaming
with comparable delay. Research has also shown that the average overlay path length from
the source to a node is O(log N) [ZLLY05]. This preserves the media data’s freshness, which
is crucial to a live media streaming application.

The gossip protocol lets each peer in the system retrieve data from multiple parents and,
at the same time, serve multiple children. Compared to tree-based protocols, this approach
greatly improves resource utilization and load balancing. In addition, the service’s stability is
also enhanced because of the redundancy of service providers. Unfortunately, because of the
partner selection process’s randomized nature, the quality of overlay delivery paths such as
bandwidth and delay can’t be optimized or even guaranteed.

2.7 Problems related to Locating Supplier Peers

Locating supplying peers is a challenge in a P2P media streaming system because each re-
questing peer must find supplying peers with enough bandwidth and preferably low latency to
achieve a good service quality. Some common techniques for locating supplying peers in such
systems include a centralized directory, hierarchical overlay structure, distributed hash table
(DHT) based approach, controlled flooding, and gossip-based approach.

2.7.1 Centralized Directory

The simplest and most commonly used method for locating peers is to maintain a centralized
directory of all peers in a directory server 2. All required peer information, including its network
address, available bandwidth, fan-out degree, and starting point of access (for video-on-demand
[VoD] systems), are in a directory server with a well-known IP address. The server can also
keep the global overlay topology among peers. Figure 2.10 demonstrates the flow of control
messages in such a system. In this system, a new requesting peer’s request is first directed to the
directory server. Upon receiving a user request, the directory server selects the most suitable
supplying peers from the stored peer list for the new user, according to its network address
and the requested media. For example, a peer with large available bandwidth and a network
location close to the requesting peer is chosen by the directory server to serve the requesting
peer. If a user wants to leave the system, he or she must signal the directory server with a
LEAVE message to clear his or her entry in the directory. The advantages of this approach
are its easy implementation and simple deployment. Centralization also greatly simplifies the
join mechanism and consequently makes the join and leave procedures quick.

The advantages of this approach are its easy implementation and simple deployment. Cen-
tralization also greatly simplifies the join mechanism and consequently makes the join and leave

2such as http://www.ppstream.com or http://www.pplive.com
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Figure 2.10: A centralized directory approach for P2P Streaming.

procedures quick. However, given N peers in the system, the directory server must maintain
O(N) states, which might overload the server when N is large. Furthermore, if a peer is unable
to send a LEAVE message to the directory server (such as during a node failure), its state
remains in the directory. To handle this problem, the peers must refresh their status at the
server using periodic keep-alive (or heartbeat) messages or similar mechanisms. Transmitting
these O(N) keep-alive control messages also incurs high-bandwidth consumption at the server.
Another system weakness is that the directory server becomes a single point of failure. While
the directory server is down, users can no longer join the system. Researchers [PWC04] have
argued that the directory server is usually also the source of data - such as for a video server.
Hence, if the server (source) fails, it might not matter whether the directory is down

2.7.2 DHT-based Approach

Another distributed approach for locating supplying peers is based on a DHT [CDK+03], a
common P2P searching technique, usually for locating nodes that store a desired object (such
as a file) in P2P networks [SMK+01], [RFH+01], [RD01]. In DHT, each peer is assigned a
peer ID by hashing its own IP address using a common known hash function such as SHA-1
[18095] and each object is also associated with a key in the same space of peer IDs by hashing
the object itself. The peer with an ID equal to the hashed key is responsible for storing the
object’s location (or the actual object). The primitive functions PUT and GET are available
in DHT, as in a conventional hash table data structure. With an object’s hashed key, a query
for the object is routed through several nodes in the DHT to the node responsible for storing
the object. There’s a routing table maintained at each node in the DHT, based on which peers
route queries. The routing load is also evenly distributed over all the peers in the DHT.

Related work has proven that query messages are routed through only O(logN) nodes for
each lookup, and each node only needs to maintain O(logN) states in its routing table. Also,
the load of routing requests is evenly distributed over all the peers in the network. Further-
more, using a well-developed DHT protocol simplifies the system’s design and implementation.
The system then can focus on the media streaming functionalities and needn’t deal with the
complicated peer management.
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Chord

Chord [SMK+01] is a peer-to-peer routing and location infrastructure that performs a mapping
of file identifiers onto node identifiers. Data location can be implemented on top of Chord by
identifying data items (files) with keys and storing the (key, data item) pairs at the node that
the keys map to.

In Chord nodes are also identified by keys. The keys are assigned both to files and nodes
by means of a deterministic function, a variant of consistent hashing [KLL+97]. All node
identifiers are ordered in an “identifier circle” modulo 2m. Key k is assigned to the first node
whose identifier is equal to or follows k in the identifier space. This node is called the successor
node of key k. The use of consistent hashing tends to balance load, as each node receives
roughly the same number of keys.

The only routing information required is for each node to be aware of its successor node
on the circle. Queries for a given key are passed around the circle via these successor pointers
until a node that contains the key is encountered. This is the node the query maps to. When
a new node n joins the network, certain keys previously assigned to n’s successor will become
assigned to n. When node n leaves the network, all keys assigned to it will be reassigned to
its successor. These are the only changes in key assignments that need to take place in order
to maintain load balance.

Only one data element per node needs be correct for Chord to guarantee correct (though
slow) routing of queries. Performance degrades gracefully when routing information becomes
out of date due to nodes joining and leaving the system, and availability remains high only as
long as nodes fail independently. Since the overlay topology is not based on the underlying
physical IP network topology, a single failure in the IP network may manifest itself as multiple,
scattered link failures in the overlay.

To increase the efficiency of the location mechanism described above-which may in the worst
case require traversing all N nodes to find a certain key-Chord maintains additional routing
information, in the form of a “finger table”. In this table each entry i points to the successor
of node n + 2i. For a node n to perform a lookup for key k, the finger table is consulted to
identify the highest node no whose ID is between n and k. If such a node exists, the lookup
is repeated starting from no. Otherwise, the successor of n is returned. Using the finger table,
both the amount of routing information maintained by each node and the time required for
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resolving lookups are O(logN) for an N -node system in the steady state. Figure 2.11 shows a
chord identifier circle consisting of three nodes.

CAN

The CAN (“Content Addressable Network”) [RFH+01] is essentially a distributed, internet-
scale hash table that maps file names to their location in the network, by supporting the
insertion, lookup, and deletion of (key, value) pairs in the table.

Each individual node of the CAN network stores a part (referred to as a “zone”) of the hash
table, as well as information about a small number of adjacent zones in the table. Requests
to insert, lookup or delete a particular key are routed via intermediate zones to the node that
maintains the zone containing the key.

CAN uses a virtual d-dimensional Cartesian coordinate space (see Figure 2.12) to store
(keyK, valueV ) pairs. The zone of the hash table that a node is responsible for corresponds to
a segment of this coordinate space. Any key K is therefore deterministically mapped onto a
point P in the coordinate space. The (K, V ) pair is then stored at the node that is responsible
for the zone within which point P lies. For example in the case of Figure 2.12(a), a key that
maps to coordinate (0.1, 0.2) would be stored at the node responsible for zone B.

To retrieve the entry corresponding to K, any node can apply the same deterministic
function to map K to P and then retrieve the corresponding value V from the node covering
P . Unless P happens to lie in the requesting node’s zone, the request must be routed from
node to node until it reaches the node covering P .

CAN nodes maintain a routing table containing the IP addresses of nodes that hold zones
adjoining their own, to enable routing between arbitrary points in space. Intuitively, routing
in CAN works by following the straight line path through the Cartesian space from source to
destination coordinates.

2.7.3 Binning

Binning [RHKS02] is a landmark based peer positioning scheme to identify a set of server peers
that are close to the requesting peer. One of the challenges of P2P discovery service is how
to locate the nearest server peers among possibly many and globally spread peers listed at an
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Figure 2.13: Illustration of a neighbor map held by Tapestry node with ID 67493. Each entry
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Figure 2.14: Illustration of an example of Tapestry mesh routing example, showing the path
taken by a message originating from node 67493 and destined for node 34567.
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overlay node. Binning organizes nearby peers in a group known as a bin. The peer to bin
assignment is done as follows. Each peer measures the distance to several landmark nodes
(Binning suggests 8 to 10 landmark nodes to cover the entire Internet) that are scattered
throughout the Internet and order the measured results in the closest to the farthest ranking.
Those peers that have the same order of landmark nodes will be placed in the same bin. The
idea behind this logic is that peers that have the same or similar landmark-distance-order
should reside in the same region of the network. When a peer requests a content from a CAN
zone, it first measures the distance to each landmark and determines its bin order. This bin
order is attached to the query from the peer to the CAN node. The destination CAN node
returns only those server peers that have the same or similar bin orders to the requesting peer.

Tapestry and Pastry

Tapestry is a peer-to-peer, wide-area decentralized routing and location network infrastructure
developed at University of California at Berkeley by Zhao et al [ZHJK04]. Tapestry is based on
a peer-to-peer overlay routing infrastructure offering efficient, scalable, location-independent
routing of messages directly to nearby copies of an object or service using only localized re-
sources. Tapestry forms an overlay network that sits at the application layer (on top of an
Operating System). If Tapestry is installed on different network nodes it will allow any one
node to route messages to any other node running tapestry, given a location and a network
independent name. Nodes in a Tapestry network can also advertise location information about
data it possesses in a specific format understood by other nodes running tapestry. This special
format allows the other nodes to find and access this data easily and efficiently, given that they
know the data name. The main focus of Tapestry is on the routing that minimizing message
latency and maximizing message throughput.

Tapestry uses adaptive algorithms with soft state to maintain fault tolerance in the face
of changing node membership and network faults. Its architecture is modular, consisting of
an extensible upcall facility wrapped around a simple, high-performance router. Therefore, we
can see that Tapestry allows nodes the ability to share data, thereby creating their own P2P
system.

Figure 2.13 shows an example neighbor map maintained by a node with ID 67493. As
shown in figure 2.13, each node maintains a neighbor map. The neighbor map has multiple
levels, each level l containing pointers to nodes whose ID must be matched with l digits (the x’s
represent wildcards). Each entry in the neighbor map corresponds to a pointer to the closest
node in the network whose ID matches the number in the neighbor map up to a digit position.
For example, the 5th entry for the 3rd level for node 67493 points to the node closest to 67493
in network distance whose ID ends in ..593. Messages are therefore incrementally routed to
the destination node digit by digit, from the right to the left. Figure 2.14 shows an example
path taken by a message from node with ID=67493 to node ID=34567. The digits are resolved
right to left as follows: xxxx7 → xxx67 → xx567 → x4567 → 34567.

Tapestry is based on the location and routing mechanisms introduced by Plaxton [PRR97],
in which they present the Plaxton mesh, a distributed data structure that allows nodes to
locate objects and route messages to them across an arbitrarily-sized overlay network while
using routing maps of small and constant size. The Plaxton mesh uses a root node for each
object, which serves to provide a guaranteed node from which the object can be located. When
an object o is inserted in the network and stored at node ns, a root node nr is assigned to it by
using a globally consistent deterministic algorithm. A message is then routed from ns to nr,
storing at all nodes along the way data in the form of a mapping (object id o, storer id ns).
During a location query, messages destined for o are initially routed towards nr, until a node
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Approach Features
Chord A scalable peer-to-peer lookup service. Given a key, it maps the key to a node
CAN Scalable content addressable network. A distributed infrastructure

that provides hash-table functionality for mapping file names to their locations.
Tapestry Infrastructure for fault-tolerant wide-area location and routing.
Pastry Infrastructure for fault-tolerant wide-area location and routing.

Table 2.2: Comparison of between various approaches for DHT-based approach

is encountered containing the (o, ns) location mapping.
The advantages of Plaxton mesh include:

1. simple fault handling by its potential to route around a single link or node by choosing
a node with a similar suffix, and

2. scalability (with the only bottleneck existing at the root nodes)

While its limitations include:

1. the need for global knowledge required for assigning and identifying root nodes and

2. the vulnerability of the root nodes.

Pastry [RD01] is a scheme very similar to Tapestry, differing mainly in its approach to
achieving network locality and object replication. It is employed by the PAST large-scale
persistent peer-to-peer storage utility.

2.7.4 Gnutella

Gnutella’s searching process is based on controlled flooding of the query over the overlay mesh
built among the system’s peers. The query from the requesting peer is sent to all its neighboring
peers. Upon receiving the query, the peer rebroadcasts the query to all its neighbors except
the one that sent the query. The query message is associated with a time-to-live (TTL) value.
Each broadcasting by a peer decreases the TTL by one. This query broadcasting continues
until the TTL becomes zero. The peers who receive the query and possess the requested object
will reply with the query’s origin, indicating the requested object’s presence. Depending on
the degree of connectivity among peers, the flooding of queries can generate a lot of network
traffic. Besides, objects located out of the search scope (which the TTL determines) wouldn’t
be found in the system.

One example of Gnutella P2P search system is GnuStream [JDXB03].

2.8 Technical Challenges and Opportunities

Though some successes have been made in recent years, especially with the introducing of mesh-
based approaches, there are still challenging problems and open issues need to be overcome in
P2P live media streaming.

The main problem results from the heterogeneity of the underlying IP networks. There
exist mainly two types of heterogeneities in the current Internet: heterogeneous receivers and
asymmetric access bandwidths. In a P2P based live media streaming system, for each individual
peer the receiving capability is decided by its downlink bandwidth, however for the whole
system the total available bandwidth is decided by the sum of the uplink bandwidths of all the
participated peers. Under this situation, same and perfect QoS is hard to be guaranteed for
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Single Search Server Peer Implementation
Approach Scalability Point Guarantee States States

Failure
Centralized Directory Low Yes Yes O(N) O(1) Simplest
Hierarchical overlay structure High No Yes O(1) O(logN) Most Difficult
DHT-based High No Yes O(1) O(logN) Medium

Table 2.3: Comparison of between various approaches for locating supplier peers

all of the participated peers. For example, if the access bandwidth of a peer is less than the
average bit rate of the media stream it requires, or the sum of the uplink bandwidths of all
upstream peers who provide data for this peer is less than the average bit rate, then random
packet-losses may occur ether during the network or at the buffer of upstream peers. This may
lead to incorrect decoding at the client side even partial data have been received, which means
not only the waste of bandwidth resources, but also degraded media reconstruction qualities.
The most hopeful solution to this problem is to provide self-adaptive QoS for each individual
peer according to the current network conditions, at the same time the total available uplink
bandwidths of all peers are utilized as full as possible. To satisfy this objective, three main
issues should be addressed:

2.8.1 Content aware media data organization

Current P2P streaming systems focus mainly on network topology and protocol design, but pay
rare attention to the media contents carried over the network. In fact, since streaming media
have their distinct characteristics from normal data file, good performance can be achieved
only when both the characteristics of media coding and networking are considered together
perfectly. While scalable coding techniques hold promise for providing network adaptive media
transmission, they are yet to be deployed in today’s mainstream media codec. A promising
solution is to partition the current non-scalable coded media data based on content analysis,
and reorganize them into another form with scalable capability to some extent, so that selective
and priority-based schedule strategies can be used while transmission.

2.8.2 Priority-based media data delivery mechanism

For the quasi-scalable media data prepared above, efficient transmission and control mecha-
nisms should be invented to guarantee that the minimal decodable media units (for example,
a video frame or slice) can be transmitted to the receiver in a restrict order based on their
priorities. This implies that every data unit received by a peer at any time is intact and decod-
able independent of any still un-received media data. By this way, no waste of bandwidth is
involved and free-error and fluent media experience can be obtained even in the case of worse
network conditions.

2.8.3 QoS adaptive multi-source and layered media data schedule algorithm

Based on the above content aware data organization and priority-based delivery mechanism,
efficient data schedule algorithms are needed to retrieve data from multiple senders in order to
maximize the overall bandwidth utilization of the whole network and minimize the average me-
dia reconstruction distortion of all users. Compared with conventional P2P streaming systems
which simply partition a streaming media into a series of data blocks and schedule each data
block as the minimal transmitting unit, the scheduling model of this system and its solutions
are more complicate to establish and resolve.
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2.9 Summary

This section provided selected literature review on recent progress of peer-to-peer streaming
systems that try to achieve data path scalability and search path scalability.

From the view of network topology, current systems can be classified into three categories
approximately: tree-based topology, forest-based (multi-tree) topology, and mesh topology.
Most of the peer-to-peer streaming systems were built on top of overlay network based multi-
cast.

Under tree-based topology, we reviewed PeerCast, Overcast, NICE and Zigzag. NICE and
ZIGZAG aim to support live-streams with small payload to a large number of users. PeerCast’s
goal is to support live-streams among dynamically changing peers. Under forest-based (multi-
tree) topology, we reviewed SplitStream, Narada and Bullet. The key idea of SplitStream is to
split the original media data into several stripes, and multicast each stripe using a separate tree.
While under mesh topology, we reviewed CollectCast, GnuStream and CoolStreaming/DONet.
In mesh topology, the data flow does not have a fixed pattern, every peer can send and also
receive data from each other in an inter-connected overlay network.

We also reviewed the problems commonly faced by peers in a peer-to-peer streaming system
- locating supplier peers. We reviewed common techniques for locating supplying peers in such
systems include a centralized directory, hierarchical overlay structure, distributed hash table
(DHT) based approach, controlled flooding, and gossip-based approach.

Finally we discussed the technical challenges and opportunities for peer-to-peer streaming.
We reviewed the three main issues faced by peer-to-peer streaming system which are related
to content aware media data organization, priority-based media data delivery mechanism and
QoS adaptive multi-source and layered media data schedule algorithm. ¤





CHAPTER 3

PALMS : Design and Implementation

All successful people have a goal. No one can get
anywhere unless he knows where he wants to go and

what he wants to be or do.
Norman Vincent Peale.

3.1 Introduction

From an user’s perspective, there is little difference between a live stream and an on-demand
video, since they have more or less the same appearance and seem to work in the same way.
But these two kinds of streaming are very different from a server/system and end-user point
of view, since they are based on quite different assumptions and requirements, thus lead to
different solutions.

On-demand streaming deals with the transmission of finite-sized media files, which are
received by the clients and usually played during the download; the media files themselves are
not sensitive to playout delay, since the events they represent aren’t “live” any more, but have
been recorded, edited and stored somewhere for public consumption.

With that, it can be said that this problem is only marginally more complex than standard
file-sharing, having the additional need of a certain (very loose) order in the reception of the
data chunks so that the user can start watching the file as soon as it’s possible. Moreover,
we can also point out from our experience that most users don’t really care about how soon a
movie can be watched, as long as it can be enjoyed when and each time the users want. We also
feel that these needs for on-demand streaming are already - or will soon be, as the available
bandwidth increases with the development of latest technology, thus can be satisfied by the
existing file-sharing applications.

Live streaming, on the other hand, deals with the transmission of practically infinite-sized
media streams, which are to be played by the clients upon reception: the streams are sensitive to
playout delay, i.e. the time skew between the transmission at the source and the reproduction
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by the users’ program, and this delay should be upper-bounded to avoid having users play
outdated information.

For the reasons given above, we choose to concentrate our research on problems related
streaming live media using peer-to-peer technologies, instead of investigate the on-demand
streaming problems.

3.2 Objectives and Design Principles

Our main goal for PALMS (P2P Unstructured Live Media Streaming) is to create an un-
structured, self-organizing overlay network with simple network construction and maintenance
mechanisms, and the ability to deliver high-bandwidth data streams across a highly volatile
and transient node population. In designing PALMS, we also make an effort to reduce the
constraints to be satisfied by any involved node, so to avoid the exclusion of significant subsets
of users with asymmetric connections lacking a sufficient upstream bandwidth, and moreover
we take into the consideration of the contribution of each peer to the system. A feature we
wish to develop that is resilient towards dynamics of peers arrival and departure, which is also
known as churn and ability to serve low-rate-contributing peers normally, as long as the system
capacity is under-utilized, and to gently decrease their service level when scarcity appears.

To achieve these goals we choose to apply the following design principles:

• all nodes in the population, besides the source, are equal, but they serve (and are served)
according to their resources, characteristics and past behaviour

• since the transience in the network and the population may be very big, we do not attempt
to keep a global system state, nor we wish to maintain large-scale infrastructures like
distribution trees

• we accept that only a local view of the network can be up-to-date at a given time - to
reduce the control traffic among nodes - so we try to exploit the properties of local- scale,
ephemeral and loosely-delimited node aggregations (local meshes) to obtain the desired
global behaviour

• the system should be compatible with (but not depend upon) advanced encoding methods
such as Forward Error Correction (FEC)

With the latest achievement of BitTorrent [Coh03], we try to develop peer-driving algo-
rithms that is able to achieve similar results in the field of reliable static file transfer. We focus
our research attention mainly on the “network and data management” level, which takes care
of the stream data selection, data replication and node association processes.

In this chapter, we present a detailed overview of the PALMS’s architecture. We also will
discuss the various components that form the foundation of distributing live media streaming
over unstructured P2P networks. Later part of this chapter, we continue the discussion of
the pros and cons of the PALMS distribution model and present the details of some of the
components that underlie the architecture.

3.3 PALMS : System Overview

PALMS is based on data-driven and receiver-based unstructured overlay media streaming. It is
designed to operate in scenarios where the nodes have heterogeneous and variable bandwidth
resources. For the ease of exposition, we refer to the media source as the streaming server
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Figure 3.1: Illustration of an overlay multicast for a peer-to-peer (P2P) media streaming sys-
tem.

and receivers as clients. The term peers and nodes are interchangeable, and refer to the all
the clients. Peers in PALMS implement data exchange policies that enforce and reward node
cooperation through a score-based incentive mechanism. The incentive mechanism encourages
cooperation among participating nodes and allows gradual improvement in the streaming of
media content and in turn improves the delivered quality of streaming.

PALMS consists of four major components: (i) overlay construction mechanism, which
organizes participating peers into an overlay; (ii) membership management (iii) streaming
scheduling mechanism, which determines the delivery of content from the streaming source
to individual nodes through the overlay; and (iv) incentive mechanism, which determines
service received by a peer as a function of the bandwidth contributed by the peer. In the
following subsections, we describe the components in PALMS.

3.3.1 Overlay Construction

In PALMS, nodes are functionally identical. They are free to exchange control information
and media content data from the stream. Participating nodes form a randomly connected
directed graph overlay network as shown in Fig. 3.1. Each peer maintains a certain number of
connected nodes that are known as neighbors. Each node receives media content from a certain
number of parent nodes and relays the content to a certain number of child nodes. Incoming
and outgoing degree denotes the number of connected parents and child nodes respectively.

The basic task of the overlay construction mechanism component for each node is to be
in charge of finding appropriate neighbors for each node through the gossip method so that
the application layer network can be successfully built up. To join the streaming session, a
new peer contacts the bootstrapping node, (streaming server in the case of PALMS) to learn
about other participating peers upon arrival. This could be regarded as the login process.
The bootstrapping node returns a list of randomly selected peers that can potentially serve as
parent nodes. The new peer contacts these potential parent nodes to determine whether they
are able to accommodate a new child node. This is by determining whether the parent node still
has enough allocation slots on the outgoing degree. The peer also maintains a target incoming
degree. If a new peer cannot identify a sufficient number of parents from the reported list, it
will contact the bootstrapping node again to obtain another list of potential parent nodes. A
successful new peer is registered with the bootstrapping node and can be selected as the parent
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Input:
Upon subscription of a new subscriber s on a contact node contact

{The subscription of s is forwarded to all the nodes of view}
for all nodes n ∈ PartialV iewcontact do

Send (n, s, forwardedSubscription);
end for

{c additional copies of the subscription s are forwarded to random nodes of view}
for (j = 0; j < c; j + +) do

Choose randomly n ∈ PartialV iewcontact

Send (n, s, forwardedSubscription);
end for

Figure 3.2: SCAMP subscription management algorithm

node by other peers. Each new joined node synchronizes the local clock with the bootstrapping
node during login process.

All the nodes will self-organize into an unstructured mesh. Each node has a member table
that contains a list of neighbor nodes obtained from bootstrapping node. The information in
member tables is encapsulated into a UDP packet and exchanged among neighbors periodically.
Each node updates its member table in accordance with the member table sent by its neighbors.
Each node sends a periodical heartbeat message to update its neighbors. If a node does not
update its neighbors periodically, it will be removed from the member table. Once a node
leaves, it will broadcast a “leave message” to all its neighbors. The nodes that receive this
message will delete the respective node from its member table as well. Therefore, the failure of
any neighbors can be detected by constantly monitoring periodical messages from neighbors.

In order to locate a better neighbor, which has higher uplink, a peer in PALMS periodi-
cally replaces the neighbor with the least contribution by selecting nodes with higher scores.
This operation helps each node maintain a stable number of partners in the presence of node
departures, and it also helps to discourage the existence of free riders within the network.

3.3.2 Membership Management

PALMS employs membership management protocol similar to SCAMP [GKM01]; a peer-to-
peer membership management for gossip-based protocols. Probabilistic gossip-based dissemi-
nation protocols have recently emerged as an attractive alternative and provide good scalability
and reliability properties. In these protocols, each member is in charge of forwarding each mes-
sage to a set of other, randomly chosen, group members. This proactive use of redundant
messages provides a mechanism for ensuring reliability in the face of node crashes and high
packet loss rates in the network. It can also be shown that the load on each node increases
only log-arithmically with the size of the group, so these algorithms are scalable. SCAMP is a
simple, fully decentralized, and self-configuring membership management protocol.

SCAMP consists of mechanisms for nodes to subscribe (join) and unsubscribe (leave) from
the group and for nodes to detect and recover from isolation. The partial views at nodes evolve
in response to changing group membership in a fully decentralized way.

In SCAMP, each node maintains two lists, a PartialView of nodes it sends gossip messages
to and an InView of nodes that it receives gossip messages from, namely nodes that contain its
node-id in their partial views. If a node i decides to keep the subscription of node j, it places
the id of node j in its partial view. It also sends a message to node j telling it to keep the
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Input:
{n receiving s adds it with the probability
p = 1/(1 + sizeofPartialV iewn)}
with probability p = 1/(1 + sizeofPartialV iewn)}

if s /∈ PartialV iewn then
PartialV iewn = PartialV iewn + {s}

else
Choose randomly n ∈ PartialV iewn

Send (ni, s, forwardedSubscription);
end if

Figure 3.3: SCAMP handling a forwarded subscription algorithm

node-id of i in its InView.
Figure 3.2 and 3.3 show the algorithm for subscription management and forwarded subscrip-

tion management. SCAMP membership management protocol only requires local information
available at the node treating the subscription request. If new nodes join by sending a sub-
scription request to a member chosen uniformly at random from existing members, then the
system configures itself toward partial views of size (c + 1)log(n) on average. Here, n is the
number of nodes in the system and c is a design parameter.

3.3.3 Streaming Scheduling

PALMS employs a swarm-like content delivery mechanism that is similar to BitTorrent [Coh03].
The main advantages of swarming content delivery are its ability to effectively utilize the
outgoing bandwidth of participating peers and its robustness against the churn.

The streaming scheduling mechanism of each node is responsible for exchanging packets
with all its neighbors. Swarm-like content delivery is incorporated in PALMS. As a parent,
each peer periodically generates a report i.e., buffer map of its newly received packets and sends
it to its child nodes. As a child, each peer periodically requests a subset of required packets from
each parent based on the reports received. The pull mode is deployed to fetch absent packets
from its parent nodes and in turn tries its best to deliver packets requested by the neighbors.
Packets requested by the pull mode are determined by the packet scheduling algorithm, which
is much similar to the data-driven approach in DONet [ZLLY05]. Peer selection for PALMS
depends on the rank ordering of the score-based incentive mechanism.

The buffer uses a slightly modified sliding window concept to allow for the flexibility required
by PALMS streaming system. There is a fixed-width window of packets, which is allowed to
slide forward if it contains at least a certain percentage of data chunks (depending on the
robustness and tolerance of the encoding). An ideal case in which a node received an ordered
stream of packets from his neighbors at exactly the same rate required by the player (which is
in turn a parameter coming from the media encoding technique used) would show a window
scrolling at the same rate of the stream.

Every node also maintains a window of interest, which is the set of sequence packets that
the node is interested in acquiring at the current time. Figure 3.4 illustrates the fundamental
concept of the sliding window. A sliding window of availability contains the list of segments
available for each node. This is the information for the buffer map shared with other neighbor
nodes. The node slides its window of interest forward over time as new packets stream in. If
a packet has not been received by the time it “falls off” the trailing edge of the window, the
node will consider that packet lost or obsolete and will no longer try to acquire it. Figure 3.5
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Figure 3.4: Illustration of data buffer for PALMS node
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Figure 3.5: Buffer State for a PALMS node at a given time

shows the buffer state of a node at a given time.
To accommodate the bandwidth heterogeneity among peers, the content is encoded with

Multiple Description Coding (MDC). Basically, MDC organizes the streaming content into
several sub-streams where each sub-stream can independently decoded. The use of MDC
for video streaming has been widely studied. Padmanabhan et al. propose that introducing
redundancy can provide robustness in media streaming [PWC03]. The delivered quality to each
peer is proportional to the number of independent sub-streams it receives. With MDC coding,
each peer is able to receive the proper number of sub-streams that are delivered through the
combination push-pull streaming mechanism.

3.3.4 Incentive mechanism

PALMS, just like any other P2P content delivery system, works on the premise that peers share
resources in order to increase the total capacity of the P2P system. In the case of PALMS,
it derives bandwidth from participating peers who operate independently of each other. A
mechanism that creates favorable incentives for all peers to contribute resources and thus
guards against bandwidth starvation in PALMS is needed to sustain peer interest in sharing



3.3. PALMS : SYSTEM OVERVIEW 37

bandwidth.
We believe that peer selection for receiving packets at child nodes offers an unique oppor-

tunity to tackle both the free-riders and the streaming Quality of Service (QoS) challenges in
a synergistic manner. We propose a score-based incentive mechanism that provides service
differentiation in peer selection for P2P streaming. Our proposed incentive mechanism is an
extension work of [HC04]. Contributors to the system are rewarded with flexibility and choice
in peer selection. Free-riders are given limited options in peer selection, if any, and hence result
low quality streaming.

We consider that PALMS consists of rational users who choose their contribution level in
order to maximize their individual utility. The contribution level xi of user i is converted to
score Si, which in turn mapped into a percentile rank Ri. The scoring function used in PALMS
is based on the ratio of amount bytes uploaded over bytes download. Peer selection depends
on the rank ordering of the requestors and candidate suppliers. For example, a peer selection
scheme may allow a user to select peers with equal or lower rank to serve as suppliers. The
outcome of the peer selection process is the realized quality of the streaming session. User
utility Ui is a function of the streaming session quality Q and the contribution cost C:

Ui(xi) = αiQ(xi)− βiC(xi), (3.1)

where αi and βi define the values of streaming quality and contribution cost to user i.
To evaluate delivery quality and quantify the performance of the media streaming system,

we define quality, Q of a streaming session as:

Q =
∑T

i=1 Vi

T
(3.2)

where T is the number of packets in a streaming session and Vi is a variable that takes value 1
if packet i arrives at the receiver before or on its scheduled play-out time, and 0 otherwise. The
quality is different from throughput because it considers the deadline of each packet. Basically,
the parameter Q captures other performance parameters such as packet delay, packet loss and
jitter.

Delivery quality can be expressed as a function of contribution, score, or rank. The quality
function is system dependent. However, delivery quality should exhibit the following properties:
(i) delivery quality is monotonically non-decreasing in user score, (ii) QMAX represents the
highest possible quality provided by the system, (iii) Delivery Quality, Q has non-negative
initial value, For example, best-effort delivery quality, QBestEffort=Q(Si=0)≥0.

When a new node first joins the system, it begins with a score of zero and receives best-effort
service QBestEffort=Q(Si=0)=0. The quality of this service may vary from system to system,
and vary as a function of system load. For example, a supplier node may choose to serve a node
through push method with a lower score only when it is idle. Thus, best-effort service quality
can be highly unpredictable and often results in lower quality. In order to improve performance
and receive better quality than best-effort, a node is required to earn it by contributing to the
system and in turn improve its score.

The score is a discrete variable and thus the probability density function (pdf) is defined
only where the score has a meaningful value. In order to compute the percentile rank, the
cumulative distribution function (cdf) of the scores is calculated. The cdf is defined as:

F (S) =
Shigh∑

i=Slow

f(i) (3.3)
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where f is the pdf of the score. The relationship between the percentile rank and the score is
provided by cdf. The percentile is obtained by dividing the cdf by the total number of nodes.
The scores of all nodes are kept at the streaming server.

We would also like to point out that with systems like PALMS, it is a time sensitive
traffic system. Free-riders cannot afford to wait for more time, since each packet has a certain
lifetime. In other words, time constrained data distribution provides stronger incentives to
peers to discourage the existence of free-riders.

3.4 PALMS : Scheduling Algorithms

The algorithms presented in this section make up the core of the PALMS system. They
determine how each node chooses its partner for data exchange, how data packets to be sent
are chosen and scheduled, which data packets are to be requested from each connected neighbor,
and an incentive mechanism to encourage contribution of data received.

3.4.1 Analysis of Pure Pull Method

We analyzed the detailed process of pure pull method to provide insight into related issue.
Basically, the pull component in PALMS is similar to the data-driven approach in DONet
[ZLLY05]. Each node in PALMS periodically exchanges buffer map of media packets with
neighbors. Based on information gathered from buffer map, a node then schedules which
packet is to be retrieved from which neighbor accordingly.

In the pull mode of PALMS, when a packet goes from one node to another, the following
three steps are executed as shown in Figure 3.6. First, the sender receives packets from a
connected neighbor and stores them in buffer. (In this case, the sender is node X while the
receiver is node Y). Sender X informs receiver Y about the packets stored in buffer by sending
a buffer map packet. Second, if receiver Y needs this packet, a request is sent to the sender.
Third, sender X will deliver all the requested packets to receiver Y. As depicted in Figure 3.6,
at least three end-to-end delays are involved in these steps. As a result, the delivery of most
packets will have extra delays for a one hop distance. We use δ1, δ2 and δ3 to denote the
intermittent waiting time. The total average latency for a packet transmitted in one hop T1hop

can be approximately computed as δ1+δ2+δ3+3δxy, where δxy is the average end-to-end delay
between nodes.

In a nutshell, the pure pull approach displays extra end-to-end latency for packet delivery.
In order to improve packet delivery ratio, we propose the combination of push-pull approach.
By incorporating the push-pull approach, we expect the following two significant improvements:
(i) reduce the end-to-end delay observed at the end user node (ii) improve the delivery ratio
of a media packet to its receiver before the playback deadline.

3.4.2 Pure Push Mechanism Trade-Off

The prime objective of the push mechanism is to quickly distribute a data block to a certain
number of peers, in order to fuel the subsequent pull-based exchanges. As we have argued
before, such a mechanism is needed due to the long delays of purely pull-based approaches; the
pushing phase brings the data block into the vicinity of virtually all peers. While there already
exist several solutions both in literature and in practice, many of these systems fail to take all
the aforementioned criteria into account. This may partly be explained by the fact that some
of the optimization goals are inherently antagonistic. For example, a low delay can be achieved
by having each peer immediately notifies its neighbors of arrival of new packets and at the same
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Figure 3.6: Illustration of one hop delay using pure pull method

time, forward all incoming data blocks to its neighboring peers through the push mechanism.
Unfortunately, such a naive solution results in a significant overhead, as a peer may receive
the same block repeatedly from different neighbors. Alternatively, peers could request missing
blocks explicitly. Node can wait until dozens of packets arrived before inform its neighbors.
This scheme is referred to as pulling since all peers have to initiate the transmission of data
blocks towards themselves. While a pull-based approach circumvents the problem of receiving
duplicates, it comes at the cost of intolerable latencies, as notifications and requests have to
be sent back and forth. Hence, there is a trade-off between overhead and efficiency in term of
live media streaming.

3.4.3 Scheduling Algorithm : Pull Mechanism

The main algorithms used for peer selection for pull and push mechanisms are an altruistic
algorithm. The prime objective of the pushing component is to quickly distribute a data block
to a certain number of peers, in order to fuel the subsequent pull-based exchanges. As we
have argued before, such a mechanism is needed due to the long delays of purely pull-based
approaches; the pushing phase brings the data block into the vicinity of virtually all peers.

The algorithm for pull methods is similar to the heuristic used in DONet [ZLLY05] and
BitTorrent [Coh03]. The main purpose of the pull method is to request the rarest packets
among those that are locally available, and to distribute the request across different possible
suppliers. The pull algorithm is shown in Figure 3.7.

Using the information gathered from the buffer map exchanged among neighbor sets, pack-
ets that are rarest across the neighborhood are requested with higher priority than more com-
mon ones. Packets with the same number of suppliers are randomly requested from one of the
neighbors that can provide them. This is to limit the load on any single peer. Based on the
rank of individual nodes, a node is only allowed to pull packet from a supplier that has the
same or lower score.

3.4.4 Scheduling Algorithm : Push Mechanism

The pull mechanism is the process of packet delivery by a neighbor after a request is made by a
node. Inspired by the work conducted by [BLBS06], the push mechanism for PALMS employs
two simple techniques too. The push mechanism for PALMS consists of a proactive component
where each node pushes data forward, and a reactive mechanism that is triggered by NACKs.

Basically, the push mechanism sends a packet relay to neighbors as soon as the packet is
received. Each node works under pure pull mode at the initial stage after joining the streaming
network. After that, based on the traffic from each neighbor, the node will subscribe to the
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Input:
bw[k] : bandwidth from neighbor k
num suppliers : number of suppliers
bm[i] : buffer map of connected node i
rank[i] : percentile rank of connected node i
deadline[j] : deadline of packet j
expected set : set of packets to be pulled
set neighbors : number of neighbors of the node

Scheduling :
for packet j ∈ expected set do

Make num suppliers = 0
for l ∈ {1..set neighbors}
• Calculate Tj , Time for Transmitting packet j :
Tj = deadline[j] - current time
num suppliers = num suppliers + bm[l, i]

end for
end for
if num supplier=1
• packets when there is only one potential supplier
for j ∈ {1..expected set}
supplier[j] ← argr{bm[r, i]=1}
end for j

else
• packets when there are more than one potential suppliers
for j ∈ {1..expected set}

for r ∈ {1..num suppliers}
• Find r with the highest bw[r] and enough

available time t[r, j]
supplier[j] ← argr{ bw[r] > bw[r′],

t[r’,j] > t[r,j],rank[j]≤rank[r], r,r′ ∈ set suppliers}
end for

end for
end if

Output supplier[j]
Do Pull packets from supplier[j]
Do Update Buffer Map

Figure 3.7: Pull method heuristic scheduling algorithm
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Input:
set neighbors : number of neighbors of the node
bm[i] : buffer map of connected node i
rank[i] : percentile rank of connected node k
deadline[k] : deadline of packet k
expected set : set of packets to be pushed

Scheduling :
for packet k ∈ expected set do

for l ∈ {1..set neighbors}
• Find Packet with the highest time-stamp :
Tk = deadline[k] - current time

end for
end for

for receiver ∈ {1..set neighbors}
• Roulette Wheel Selection for receiver
receiver’s with higher rank[i] are given higher probability

end for
Output receiver[k]
Do Push packet to receiver[k]

Figure 3.8: Push method heuristic scheduling algorithm

pushing packets from its neighbors accordingly at the end of each time interval. Due to the
delay that might occur in a pure pull method, a push mechanism helps to increase the delivery
ratio of packet to receiver nodes. Moreover, due to the unreliability of the network link or a
neighbor failure, some of the packets are lost during transmission. An overlay node can detect
missing packet using gaps in the packet sequence numbers. This information is used to trigger
NACK-based retransmission through the next interval of push mechanism. Thus, with the help
of the push mechanism, packets are pushed and received at the receiver nodes at a second time
interval.

A good selection strategy is required to distribute the packets through the push mechanism.
This is to ensure that every node pushes different packets in order to reduce redundancy. Push
packets should also take into account the requests from neighbor nodes. The push algorithm
is shown in Figure 3.8.

For push mechanism packet scheduling, each neighbor node tries to allocate different packets
into the Push Packet Map, PPm to be pushed. A Push Packet Map, PPm consists of node id
and packet sequence number. A simple rank based roulette wheel selection scheme is applied
for the next time interval for each node to push the available segments. Packets with the
highest time-stamp or least sent will be given higher priority to be allocated into the Push
Packet Map, PPm. Each node keeps a counter of how many times each packet is sent. Packets
with the least number of times sent will be chosen. In addition to that, packets that required
retransmission based on NACKs received will be allocated into the Push Packet Map, PPm
too.

3.5 PALMS Framework

In this section, we present a generic system architecture for the implementation of PALMS. Fig.
3.9 depicts the system framework of a PALMS node. Network Interface is used to broadcast
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Figure 3.9: A generic system architecture for a PALMS node

and receive packets. Multimedia Player decodes multimedia data received and displays it on
the screen. Apart from the above components, there are four key modules in the system.

1) Buffer Manager: This module manages the video data received and stores it in Buffer
Memory. When a video packet is received from the Packet Processor module, it then stores
and orders the data in Buffer Memory. In addition, Buffer Manager module supplies video
data to Multimedia Player and Scheduler Manager for display and broadcast, respectively.

2) Neighbor Information Manager: Neighbor Information Manager stores information on
connected neighbors. It helps the node maintain a partial view of other overlay nodes. Based
on information obtained from buffer map, which is periodically exchanged between a node and
its neighbors, Network Information Manager keeps track of the current list of active nodes. It
also helps the node to establish and maintain partnership with other nodes.

3) Scheduler Manager: The primary function of this module is to broadcast buffer map
packets periodically. It constructs a buffer map packet that indicates the descriptions received
and the connected nodes with the descriptions. Then, the packet is broadcast through the
Network Interface. Moreover, Scheduler Manager handles the push-pull mechanism of video
packets and constructs video packets for broadcast operations with suitable video data supplied
from Buffer Manager. Packets are sent through the push mode to qualified nodes based on the
score-based incentive mechanism.

4) Packet Processor: The functions of this module are to extract information from packets
(buffer map packets and video packets) received from Network Interface and deliver it to
other modules. Upon processing a buffer map packet, the module provides neighborhood
information to Network Information Manager. If a video packet is received, it extracts the
required information and passes to Buffer Manager and Scheduler Manager module.

3.6 Advantages of the PALMS approach

In the following section, we present the advantages and disadvantages of PALMS push-pull
scheduling approach with respect to the live streaming system.
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3.6.1 Scalability

One of the main issues for live streaming system is the number of participating nodes in a
system. However, PALMS is based on data-driven receiver-based approach P2P system that is
inherently scalable. Similar to nodes in a P2P system, if each node is sharing part of the load,
more nodes mean not only more demand but also more capacity. By contrast, if a service runs
on a central host, more nodes will eventually mean that more resources need to be added at
the host. If new host resources aren’t added, the service breaks or slows to a crawl or suffers
in some other way.

3.6.2 Dealing with heterogeneity

PALMS employs a swarm-like content delivery mechanism similar to BitTorrent. The main
advantages of the swarming content delivery are its ability to effectively utilize the outgoing
bandwidth of participating peers and its robustness against the dynamics of peer leaving or
joining (or churn). The swarm-like content delivery incorporates push and pull mechanisms,
for content requesting and delivering. Each peer in PALMS periodically reports its newly
received packets to its neighbor peers. As a receiver peer, each peer periodically requests a
subset of required packets from each supplier peer based on the reported available packet at
each supplier peer and its available bandwidth. To accommodate the bandwidth heterogeneity
among peers, in PALMS, the content is encoded with MDC. MDC organizes the streaming
content into several sub-streams where each sub-stream can be independently decoded. The
delivered quality to each peer is proportional with the number of independent sub-streams that
it receives.

3.6.3 Reliable Streaming

The heuristic approach for the push and pull mechanisms allow each peer chooses itself its
neighborhood according to the data it wants. Moreover this mechanism makes the message
possible in order to be transmitted to all receivers without a clearly defined topology built in
the overlay. As PALMS employs the data-driven and receiver based approach, which does not
really structure the overlay, could be less sensitive to dynamicity of the streaming hosts, thus
it is be the best approach to use for live P2P streaming protocols. With layered coding like
MDC, data is encoded in several layers and it is necessary to receive at least the main layer.
The other layers will only improve the quality of reception. With MDC, it is almost like layered
coding but it is not necessary to receive a particular layer.

3.7 Disadvantages of the PALMS approach

3.7.1 High volume of traffic

PALMS is based on data-driven receiver-based P2P overlay network. Similar with swarm-like
content delivery mechanism of BitTorrent-style networks where all participants share resources
in an unstructured P2P networks. These approaches, although similar in nature, each have
their own distinct disadvantages, especially when considered in relation to a scientific research
community utilizing volunteer resources. However, the swarm-like content could leads to high
volume of traffic. A client could send consecutive requests for packet lists to connected neigh-
bors. A possible solution for this problem would be to have a group peers to monitor the
requests made by connected nodes.
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3.7.2 Lack of monitoring

Due to the distributed nature of unstructured overlay network of PALMS, lack of monitoring
is one of the disadvantages of the PALMS approach. PALMS unstructured overlay networks
have multiple peers that send multiple traffic to other peer. This may introduces extra data
overhead for retransmits, communication and redundancy if no proper monitoring system is
employed.

3.8 Summary of PALMS architecture

In this chapter, we presented an overview of the PALMS architecture, its service model and the
network underlying the architecture. We described details of how PALMS clients discover and
join a streaming session, locate appropriate neighbor nodes, and attach to them to participate
in the streaming session. The PALMS architecture relies on unstructured overlay application
level mesh network to provide an efficient and robust live media streaming distribution. Our
architecture makes use of collaborative push and pull media connected from connected nodes.

The incentive mechanism in PALMS provides flexibility to select suppliers to the cooperative
users to improve the streaming quality. With the incentive mechanism, the system selects
best suppliers for each session and ensures that each supplier has high availability so that
the suppliers do not fail often. PALMS employs rank-based incentive mechanism in order to
achieve cooperation through service differentiation.

In Chapter 4, we will discuss the simulation framework to perform extensive simulations
to study the performance of PALMS. Then in Chapter 5, we will evaluate and discuss the
simulation results based on performance metrics and comparison with other existing streaming
protocols. ¤



CHAPTER 4

Simulations Framework

These are my principles. If you don’t
like them, I have many others.

Groucho Marx.

In this chapter, we perform extensive simulations to study the performance of PALMS. Sim-
ulations on the algorithms’ behavior test for different network sizes, bandwidth distributions,
streaming rates, and number of free-riders using Network Simulator, ns-2 [ns2].

4.1 Simulation Software

Network Simulator, ns-2 is a discrete event simulator targeted at networking research. ns-2
provides substantial support for simulation of TCP, routing, and multicast protocols over wired
and wireless (local and satellite) networks.

ns-2 began as a variant of the REAL network simulator in 1989 and has evolved substantially
over the past few years. In 1995 ns-2 development was supported by DARPA through the VINT
project at LBL, Xerox PARC, UCB, and USC/ISI. Currently ns-2 development is support
through DARPA with SAMAN and through NSF with CONSER, both in collaboration with
other researchers including ACIRI. ns-2 has always included substantial contributions from
other researchers, including wireless code from the UCB Daedelus and CMU Monarch projects
and Sun Microsystems.

Network Simulator, ns-2 software is freely available at The Network Simulator - ns-2 home-
page1.

4.2 Simulation Setup

We have conducted extensive experiments with our PALMS prototype. In this section, we first
describe the simulation setup for PALMS in the Network Simulator, ns-2 environment. Sim-

1http://www.isi.edu/nsnam/ns/
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ulations on the algorithms’ behavior test for different network sizes, bandwidth distributions,
streaming rates, and number of free-riders.

4.2.1 Video Data

The length of the video is 120 minutes (a typical length for a movie).

4.2.2 Video Coding

We used a video stream that is Multiple Description Coding (MDC) encoded with 5 descrip-
tions. MDC was originally developed at Bell Laboratories, having specifically circuit switched
networks in mind. The idea was to transmit data over multiple (telephone) lines where in case
of a line failure it should still be possible to decode the remaining data, though this would
result in a reduced quality. This method was called channel splitting. The original bit stream
is partitioned into different so-called descriptions of the one source. Receiving one or more
of the source descriptions allows the source image to be reconstructed to a prescribed quality
level.

MDC builds on Forward Error Concealment methods; i.e. the mechanisms to deal with
errors (respectively reduced quality) are already implemented in the coding process. Therefore
redundant information is encoded with each descriptor so that it is possible to decode each of
the descriptors separately. This is called fractional repetition of core data. The protection of the
core data can be higher (Unequal Error Protection) to ensure that a descriptor can be decoded.
Any additional descriptor then enhances the presentation quality. Thus, descriptors carried in
different streams do not build on each other and therefore do not need to be prioritized.

MDC’s coding technique which fragments a single media stream into n independent sub
streams (a ≥ 2) referred to as descriptions. The packets of each description are routed over
multiple, (partially) disjoint paths. In order to decode the media stream, any description can
be used, however, the quality improves with the number of descriptions received in parallel.
Built on Forward Error Concealment, MDC is to provide error resilience to media streams.
Since an arbitrary subset of descriptions can be used to decode the original stream, network
congestion or packet loss - which are common in best-effort networks such as the Internet - will
not interrupt the stream but only cause a (temporary) loss of quality. The quality of a stream
can be expected to be roughly proportional to data rate sustained by the receiver.

MDC is a form of data partitioning, thus comparable to layered coding as it is used in
MPEG-2 and MPEG-4. Yet, in contrast to MDC, layered coding mechanisms generate a base
layer and n enhancement layers. The base layer is necessary for the media stream to be decoded,
enhancement layers are applied to improve stream quality. However, the first enhancement
layer depends on the base layer and each enhancement layer a + 1 depends on its subordinate
layer a, thus can only be applied if a was already applied. Hence, media streams using the
layered approach are interrupted whenever the base layer is missing and, as a consequence, the
data of the respective enhancement layers is rendered useless. The same applies for missing
enhancement layers. In general, this implies that in lossy networks the quality of a media
stream is not proportional to the amount of correct received data.

For simplicity, we assume that all descriptions have the same constant bit rate of 100 Kbps.
Therefore, the rate of the full quality version of the stream is 500 Kbps.

4.2.3 Peer Parameters

The incoming access link bandwidth for all peers are set to 500 Kbps. The incoming access links
of all peers are set to 500 Kbps so that each peer can easily receive the full quality playback
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Upload Bandwidth SN1 SN2 SN3 SN4 SN5
128 kbps 5 % 15 % 10 % 50 % 25 %
256 kbps 10 % 80 % 10 % 25 % 25 %
512 kbps 40 % 5 % 80 % 25 % 25 %
0 kbps 45 % 0 % 0 % 0 % 25 %

Table 4.1: Scenarios for comparing different upload bandwidth under PALMS

rate. The playback starts 10 seconds after receiving the first packet. The buffer length is set
to 30 seconds. In all our experiments we use a heartbeat period of 5 seconds for all simulated
protocols. The interval for the next round of push mechanism is set for every 10 seconds. In
order to examine the effects of aggregate available resources, bandwidth heterogeneity and free-
riders, the outgoing bandwidth of individual peers can be set to one of four values : 128 Kbps,
256 Kbps, 512 Kbps and 0 Kbps. By controlling the distribution of peers across these four
groups, we can control the heterogeneity of outgoing access link bandwidth, the percentage
of free-riders that exist in the system i.e., with outgoing bandwidth of zero, which in turn
determines the aggregate outgoing bandwidth i.e., system capacity for a given scenario. The
distribution of 1000 peers across different groups is shown in Table 4.1.

4.2.4 Network Topology

Topology is generated by using Georgia Tech Internetwork Topology Models (GT-ITM) gen-
erator [Zeg96], a package for generating and analyzing graph models of internetworks. The
GT-ITM topology generator can be used to create flat random graphs and two types of hier-
archical graphs, the N-level and transit-stub. Several types of information are associated with
nodes and edges to augment the basic topology. Each node has a string label that indicates
properties of the node: an identifier indicating whether it is a transit or stub node, a global
identifier for the domain to which it belongs, and a domain-local identifier.

For stub nodes, the label also indicates the identifier for the primary transit node where
the stub domain is attached. Each edge has a routing policy weight that can be used to find
routes that follow the standard domain-based routing outlined earlier. That is, a shortest path
found using the routing policy weights will traverse transit domain(s) if and only if the two
endpoints are in different domains.

The Transit-Stub generation software is written in C, and uses the Stanford GraphBase [2]
for representation and manipulation of graphs. The GT-ITM release includes the necessary
libraries from the Stanford GraphBase (SGB), thus the user need not download or understand
this code to generate and analyze graphs. GT-ITM also contains other graph generation
methods (e.g., Waxman’s) for comparison and to use as intradomain topology.

In respect to simulation for PALMS, the delay on the access links are randomly selected
between 5 ms to 25 ms. ¤





CHAPTER 5

Simulation Results and Discussions

By three methods we may learn wisdom:
First, by reflection, which is noblest;

Second, by imitation, which is easiest;
and third by experience, which is the bitterest.

Confucius.

The goal of PALMS is to overcome the streaming performance failures and Quality of
Service (QoS). In this chapter, we present an evaluation of how well PALMS meets these goals,
and show that PALMS are beneficial to live media streaming applications because PALMS can
successfully improve the quality of streaming. In many cases, PALMS can also improve the
latency and throughput.

5.1 Results and Discussions

We have examined the impact of heterogeneous bandwidth and free-riders on the performance
of PALMS streaming. We also study the three metrics of interest: Delivery quality, Delivery
latency and Data overheads. We compare the push-pull protocol performance of PALMS with
two existing streaming protocols - DONet [ZLLY05] and Chainsaw [PKT+05]. Both DONet
and Chainsaw employ pure pull mechanism. DONet employs a rarest-first strategy as the block
scheduling method, and select suppliers with the most surplus bandwidth and enough available
time first. Chainsaw uses a purely random strategy to decide what blocks to request from
neighbors.

5.1.1 Effects of Heterogeneous Bandwidth

We first examine the impact of heterogeneous uplink bandwidth on the performance of PALMS.
The first question is: “How the delivered quality of high bandwidth peers is affected by the degree
of bandwidth heterogeneity and the percentage of low bandwidth peers?”.
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(a) Effect of heterogeneous upload bandwidths on PALMS
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(b) Effect of free-riders on delivered quality for PALMS

Figure 5.1: Simulation results on the effect of heterogeneity bandwidths and free-riders

In the experiments, we focus on three scenarios, SN2, SN3, and SN4 as shown in Table
4.1. We also examine the correlation between the delivered quality (in terms of number of
description) and contributed resources vis-a-vis outgoing bandwidth of participating peers.
Figure 5.1(a) depicts the CDF of delivered quality and utilization of access upload bandwidth
among participating peers for these three scenarios. Based on the results obtained, figures
show that the degree of heterogeneity in upload bandwidth does not affect the distribution of
delivered quality of participating peers in PALMS.

5.1.2 Effect of Free-riders

We also investigate the impact of free-riders on the performance of PALMS. For the experi-
ments, we focus on scenarios SN1 and SN5. We set the number of free-riders in the system as
roughly 25% and 45% of the total number of participating peers. We examine the performances
of PALMS without the implementation of the score-based incentive mechanism. Figure 5.1(b)
shows that the presence of free-riders significantly reduces the delivered quality. We are aware
that the scenario with free-riders can be viewed as a special case for bandwidth heterogeneity.
Thus, the significant drop in delivered quality as the result of free-riders was rather surprising
since the earlier result showed that heterogeneity of bandwidth does not have a major effect
on performance.

As we take a closer examination of our results, they revealed that the free-riders affect the
connectivity of the overlay. The explanation for such behavior is because free-riders do not have
any connection to any neighbors and their presence in the overlay can affect the connectivity
and content exchange between other connected nodes. This in turn limits the delivered quality
to other participating nodes. Nevertheless, participating peers are not completely disconnected
from the mesh network. The presence of free-riders affects the distribution of content which in
turn affects the buffer requirement at each peer. Thus, while a traditional file sharing system
can be sustained with low level of cooperation, a P2P streaming system cannot provide high
streaming quality to its users if only a small fraction of users cooperate. In short, our results
show that the presence of free-riders can significantly affect the connectivity of participating
peers in the overlay network which in turn prevents content swarming among peers and thus
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Figure 5.2: Delivery Ratio as function to Group Size.

limits the delivered quality to subset of peers. This shows that there is a need for mechanism
to ensure proper connectivity among participating peers and reduce the number of free-riders
in the network.

5.1.3 Effectiveness of the Incentive Mechanism

We compare the effectiveness of the incentive mechanism for PALMS with the existence of
free-riders. Basically, the incentive mechanism provides flexibility to select suppliers from
cooperative users to improve the streaming quality. Figure 5.1(b) shows the system performance
under situations with and without the proposed incentive mechanism. Based on the results,
most peers have substantially higher quality of media streaming as compared to the system that
does not have an incentive mechanism. We also observe from the results of our experiments
that the proper selection of peers is important for a P2P streaming session. Random peer
selection yields unpredictable quality, which might be acceptable in file sharing, but not in
a streaming session. On the other hand, quality-aware peer selection can provide stable and
predictable quality which is a pre-condition for video applications.

5.1.4 Delivery Quality and Scalability

Content delivery among peers is performed using the combination of push scheduling coupled
with pull requesting by child peers. Each peer receives content from all of its connected
neighbors and provides content to all of its neighbors peers in the overlay. The requested
packets from each neighbor are determined by a packet scheduling mechanism. Given a peer’s
playout time as well as the available content and available bandwidth among its supplier peers,
this receiver-driven packet scheduling mechanism should select requested packets from each
supplier peer in order to maximize its delivered quality, i.e., accommodating in-time delivery
of requested packets while effectively utilizing available bandwidth from all parents.

Maintaining continuous playback is a primary objective for streaming applications. To
evaluate continuity, we define delivery ratio to represent the number of packets that arrive
at each node before playback deadline over the total of number of packets encoded. We set
the streaming rate as 500kbps. Figure 5.2 shows the average delivery ratio for PALMS in
comparison to DONet and Chainsaw. From the result, we can observe that the performances
for PALMS and DONet remain almost the same when group size increases. This is an indication
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Figure 5.3: Comparison on the average time for arrival first packet.

that the performance of swarming based protocols or data-driven protocols is not affected by
group size. In other words, swarming protocols have a good scalability. However, Chainsaw
method decreases more in comparison to PALMS and DONet. As shown in Fig. 5.2, PALMS
has 20% gains compared to DONet and over 45% gains compared to Chainsaw. We also note
that the delivery quality of PALMS scales with the number of participating nodes and almost
independent of the overlay network size. This is because the availability information from
buffer maps are only locally exchanged. In fact, a larger overlay network size often leads to
better playback continuity due to the increasing degree of cooperation.

5.1.5 Delivery Latency

Typically, users of live P2P streaming applications need to receive a stream of good quality,
i.e. a continuous stream. In other words, protocols should limit packet losses which happen
when clients leave the networks and depending peers have to recover the stream. Since it is
about live streaming, protocols should minimize the duration between the moment where the
clients enter the network and the moment they receive their first packet of the stream. This
is all the more true if a client asks for the stream consequently to departures of peers. Thus,
we compare approaches used by these protocols according to the average time for the arrival
of first packet. In these simulations, we want to know the delays it takes to receive the first
packet of the stream according to the protocols and their different implementations. We varied
the number of clients from 1 to 1000.

Figure 5.3 shows the result of the distribution of latency experienced by data packets at the
different overlay nodes. Note that all protocols suffer an increase in average time of first packet
arrival, stabilize, then stay relatively constant with the number of nodes. The increase is well
identified and is due to the implementation of swarming protocols for PALMS and DONet.
PALMS and DONet have an average time to first packet shorter than all implementations of
Chainsaw. It means that relatively PALMS and DONet are better than Chainsaw according
to these metrics. This is due to the approach used by PALMS and DONet to establish peering
relationships.
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Control Overheads Delivery Ratio
Group (Control Traffic/Video Traffic)
Size PALMS DONet PALMS DONet
100 0.0173 0.0161 0.91 0.79
200 0.0175 0.0163 0.90 0.75
300 0.0183 0.0171 0.88 0.73
400 0.0184 0.0173 0.88 0.75
500 0.0196 0.0182 0.89 0.76
1000 0.0232 0.0204 0.89 0.79
2000 0.0244 0.0232 0.90 0.79
4000 0.0296 0.0270 0.90 0.80

Table 5.1: Comparison of Control Overheads for PALMS and DONet
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Figure 5.4: Average Delivery Ratio as a function to Streaming Rate. Group Size is 1000.

5.1.6 Data Overheads

PALMS manages the membership for all nodes in a fully distributed fashion. Each node keeps
partial information about other nodes, and gossips these information to preferentially chosen
neighbors. Group membership management protocols are crucial to multicasting. They provide
applications with the dynamic membership information. Due to large overhead, traditional
protocols are not suitable for large-scale P2P networks. As PALMS employs employs a light-
weight gossip protocol, most control messages in PALMS are for exchanging data availability
information. The number of nodes in a group thus becomes a key factor to the control overhead.

We compare the overheads of PALMS to DONet to achieve different delivery ratios. Table
5.1 shows that PALMS incurs very low additional data overheads to achieve relatively high
delivery ratios. The control overheads at different overlay nodes increase log-arithmically with
the increase in group size. The control overheads for PALMS are higher due to the additional
messages such as Push Packet Map messages and NACKs. However the amount of increase at
each overlay node is essentially minor, less than 3% of the total traffic. We believe the data
overheads for PALMS can be further reduced by increasing the window size. We also observe
that the data delivery ratio of PALMS is high across various group sizes.
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Figure 5.5: Average Delivery Ratio for different group size with 20% free-riders and streaming
rate 500kbps. (Group Size 1000).

100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Group Size

A
v

e
ra

g
e

 D
e

li
v

e
ry

 R
a

ti
o

PALMS

DONet

Chainsaw

Figure 5.6: Average Delivery Ratio for different group size with 50% free-riders and streaming
rate 500kbps. (Group Size 1000).

5.1.7 The impact of Free-riders

We compare the performance of PALMS, DONet and Chainsaw with the existence of free-riders.
We set the number of free-riders as 20% and 50% of the total number of connected nodes. The
streaming rate is set as 500kbps. Figure 5.5 and figure 5.6 show the average delivery ratio as
a function to group size. As expected, the average delivery ratio for PALMS are significantly
better than DONet and Chainsaw for both cases.

5.1.8 Performance under Stable Environment

We examine the performance of PALMS in comparison to DONet and Chainsaw under stable
environment. We set all the nodes to join in an initialization period of around 1 minute, and
then persist in the lifetime of the streaming for 120 minutes, a typical length for a movie.
Figure 5.2 and 5.4 show the average delivery ratio as a function to group size and streaming
rate. As mentioned earlier, we can see that the average delivery ratio basically remains almost
the same when the group sizes increase.
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Figure 5.7: Average Delivery Ratio as a function to ON/OFF Period, T(s). Group Size is 1000.

5.1.9 Performance under Dynamic Environment

The high connectivity of our network topology and the flexible choice of neighbors allows to
build up and exchange buffer map information quickly. Several scenarios have been considered
in which a large fraction of peers leaves simultaneously. It turns out that it is easy to maintain
the topology and to recover even from such massive concurrent network changes.

In Figure 5.7 we show the average delivery quality with dynamic node joining, leaving and
failing. Most parameters settings are similar to that in the previous experiment for stable
environment. For this experiment, we set each node changes its status according the ON/OFF
model. The node actively participates the overlay during the ON period, and leaves (or fails)
during the OFF period. Both ON and OFF periods are exponentially distributed. A severe
network failure is assumed where all the peers crash without notice (no “leave message”).
Figure 5.7 shows that a shorter ON/OFF period leads to a lower delivery ratio. However, the
overall delivery ratio for PALMS is higher in comparison to DONet and Chainsaw because the
additional push mechanism is able to help to recover from a vast majority of losses. Note that
Chainsaw displays the poorest performances. Due to the fast repairing process, our system
also copes well with membership changes occurring continuously over time.

5.2 Summary

In this chapter, we presented PALMS, a P2P system for live media streaming. Our systems’
innovative features are the usage of the combination push-pull protocol and the presence of
score-based incentive mechanisms to encourage cooperation among connected nodes.

We also examine the issues and challenges in offering P2P streaming under PALMS. In
particular, we focus on the impact of outgoing bandwidth heterogeneity and free-riders on
the performance of P2P streaming. We identified that P2P streaming is able to effectively
accommodate the heterogeneity of uplink bandwidth, but the presence of free-riders could
significantly affect the connectivity of the overlay and reduce the feasibility of data exchange
among nodes. This result significantly degrades the delivered quality to a subset of peers in
the system.

To successfully deploy PALMS streaming services, we proposed push-pull score-based in-
centive mechanism to address the issue of delivery quality, delivery latency and free-riders.
We conducted simulations and we showed that a push-pull score-based incentive mechanism
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achieves cooperation through service differentiation. In this framework, the contribution of
a user is converted into a score and mapped into a rank, and the rank provides flexibility in
peer selection that determines the quality of a streaming session. Cooperative users earn higher
rank by contributing their resources to others, and eventually receive high quality of streaming.
Free-riders have limited choice in peer selection, hence receive low quality streaming.

We evaluated the performance of PALMS in comparison to DONet and Chainsaw. Our
simulations conducted over ns2 demonstrated that PALMS delivers quite a good playback
quality even under formidable network conditions and the existence of free-riders. Our study
shows that there are multiple motivating factors for having an incentive mechanism in a P2P
media streaming system. First, the streaming quality is poor if the level of cooperation is
low even when the network is not heavily congested. Second, unlike traditional file sharing,
cooperation from a few altruistic users cannot provide high quality streaming to its users in a
large system. We show that a rank-based incentive mechanism achieves cooperation through
service differentiation. Cooperative users earn higher rank by contributing their resources to
others, and eventually receive high quality streaming. Free riders have limited choice in peer
selection, hence receive low quality streaming. ¤



CHAPTER 6

Extensions of PALMS

We are what we repeatedly do.
Excellence, then, is not

an act, but a habit.
Aristotle.

The previous chapter introduced and examined PALMS - P2P Unstructured Live Media
Streaming model. PALMS is a live media streaming system that is based on mesh topology
and the combination of push-pull scheduling protocol. Based on simulations conducted, it is
shown that PALMS is able to provide reasonable streaming quality and robust to formidable
network conditions and the existence of free-riders. Moreover with the usage of the combination
push-pull protocol and the presence of score-based incentive mechanisms, PALMS is able to
encourage cooperation among connected nodes.

A distinct, but related problem regards roles that nodes may assume: original P2P systems
were based in a complete “democracy” among nodes. The common assumptions of “everyone
is a peer” is generally applied. However, physical hosts running P2P software are usually
very heterogeneous in terms of computing, storage and communication resources, ranging from
high-end servers to low-end desktop machines. The super-peer paradigm is an answer to both
issues. The super-peer approach to organize a P2P overlay is a trade-off solution that merges
the client-server model relative simplicity and the P2P autonomy and resilience to crashes. The
need for a super-peer network is mainly motivated by the fact to overcome the heterogeneity of
peers deployed on the Internet. A super-peer connected with some ordinary peers has sufficient
CPU power, bandwidth, and storage capacity and plays a role of a controller. A ordinary peer
has the same ability of other ordinary peers have. Authors [YGM03] proposed some design
guidelines and fundamentals characteristics are discussed. A mechanism to split node clusters
is proposed and evaluated analytically. Super-peer solutions proved to be effective solutions in
the real world. Applications like Kazaa (FastTrack) [kaz] and Skype [sky] are two outstanding
examples. However, their actual protocols are not publicly available and thus it is difficult for
other protocols to make comparison in terms of designs and performances.
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Our proposed protocol, PALMS-SP is a super-peer based two-payer P2P overlay network
that focuses on the monitoring aspect to improve the latency between peers and delivered
streaming quality of live media streaming. We incorporate the work in [ZLLY05] by consid-
ering a combination of push-pull methods, rather than pure pull methods for the streaming
mechanism. Our main objective is to reduce the end-to-end delay and in turn enhances deliv-
ered streaming quality.

6.1 PALMS-SP : System Overview

PALMS-SP is based on data-driven and receiver-based unstructured two-layer super-peer based
overlay media streaming. It is designed to operate in scenarios where the nodes have heteroge-
nous and variable bandwidth resources. For the ease of exposition, we refer to the media
source as the streaming server and receivers as ordinary peer. The term peers and nodes are
interchangeable, and refer to the all the ordinary peers. We consider a network consisting a
large collection of nodes. The network is highly dynamic; new nodes may join at any time, and
existing nodes may leave, either voluntarily or by crashing.

PALMS-SP consists of three major components: (i) overlay construction mechanism,
which organizes participating peers into a two-layer super-peer based overlay; (ii) streaming
scheduling mechanism, which determines the delivery of content from the streaming source
to individual nodes through the overlay; and (iii) super-peer management mechanism,
which determines which nodes may switch role at will from a ordinary peer to super-peer
status. In the following subsections, we describe these components in PALMS-SP.

6.2 Overlay Construction

In PALMS-SP, nodes are functionally identical. They are free to exchange control information
and media content data from the stream. Each peer maintains a certain number of connected
nodes that are known as neighbors. Each node can potentially communicate with every other
node in the network. Each node receives media content from a certain number of neighbor nodes
and relays the content to a certain number of neighbor nodes. Nodes are heterogenous: they
differ in their computational, storage capabilities, and bandwidth. Nodes may act as super-
peers or ordinary nodes. Each super-peer SP is associated with a capacity value max(SP )
that represents the maximum number of ordinary nodes associated to a super-peer SP .

The basic task of the overlay construction mechanism component for each node is to be
in charge of finding appropriate super-peer and neighbors for each node through the gossip
method so that the application layer network can be successfully built up. To join the streaming
session, a new peer contacts the bootstrapping node, (streaming server in the case of PALMS-
SP) to learn about super-peers and other participating peers upon arrival. Streaming server is
selected as streaming server persists during the lifetime of streaming and its identifier/address
is universally known. This could be regarded as the login process. The bootstrapping node
returns a list of selected super-peers that can potentially serve as parent nodes. The new peer
contacts these potential super-peers to determine whether they are able to accommodate a
new child node. This is by determining whether the super-peer still has enough allocation
slots on the outgoing degree. In the case of PALMS-SP, each peer is associated to exactly one
super-peer. The number of child nodes associated to a super-peer is pre-determined. As shown
in Figure 6.1 and 6.2, an overlay network consists of two layers, namely ordinary peers layer
(lower) and super-peer (higher) layers. The ordinary peer and super-peer layers are composed
of a set of ordinary peers and a set of super-peers, respectively. A collection of a super-peer SP
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Figure 6.1: PALMS-SP : Two-layer overlay network composed of ordinary peer and super-peer
layers
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Figure 6.2: Two-Dimension Illustration of PALMS-SP that consists of super-peers and ordinary
peers layers
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: Ordinary Peer : Super-peer : Cluster

Figure 6.3: Illustration of a traditional super-peer network.

and its ordinary peers OP1, OP2, ...OPn(n ≥ 1), and it is referred to as a cluster CSP . A super-
peer SPi is connected with another super-peer SPj at the super-peer layer. The PALMS-SP
topology can be summarized as the following:

• each node is either super-peer or a ordinary peer;

• each ordinary peer OP is associated to exactly one super-peer SP ;

• the number of ordinary nodes associated to a super-peer SP does not exceed max(SP ).

In traditional super-peer networks shown in Figure 6.3, ordinary peers in a cluster cannot
directly communicate with each other. The ordinary peers have to communicate with each
other through super-peer in the cluster. It takes at least two hops to delivery message from
a ordinary peer to another ordinary peer. In this paper, we assume each ordinary peer can
directly communicate with every neighbor peer in a cluster. Because of this assumption, the
number of communication between a super-peer and its ordinary peers can be reduced and the
super-peer has a lighter workload.

Each node has a member table that contains a list of neighbor nodes obtained from the
super-peer. The information in member tables is encapsulated into a UDP packet and ex-
changed among neighbors periodically. Each node updates its member table in accordance
with the member table sent by its neighbors. A super-peer SP holds all the information on
service of every ordinary peer in a cluster CSP . Each node sends a periodical heartbeat message
to update its super-peer. If a node does not update its super-peer periodically, it will be re-
moved from the member table. Once a node leaves, super-peer will broadcast a “leave message”
to all its ordinary peers within its cluster. The nodes that receive this message will delete the
respective node from its member table as well. Therefore, the failure of any neighbors can be
detected by constantly monitoring periodical messages from super-peer.

In order to locate a better neighbor, which has higher uplink, a peer in PALMS-SP periodi-
cally replaces the neighbor with the least contribution by selecting nodes with higher scores (the
ratio of uploaded packets over downloaded packets). This operation helps each node maintain
a stable number of partners in the presence of node departures, and it also helps to discourage
the existence of free riders within the network.
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6.3 Super-Peer Management Mechanism

It is a feature of the super-peer based P2P system that the OP should select only one SP for
sharing resources and can participate in the network only through the chosen SP. Compared
with pure P2P systems, super-peer based P2P systems have to deal well with a large number of
queries from OPs. The selected SP must handle queries efficiently and search for files requested
by the OP. At the super-peer layer, a super-peer is connected with other super-peers in a flat
unstructured overlay network. The ordinary peer and super-peer layers are composed of a set
of ordinary peers and a set of super-peers respectively. One of the main obstacle for super-peers
network is the super-peer selection.

6.3.1 Super-peer Selection Problem

The super-peer selection problem is highly challenging because in the peer-to-peer environment,
a large number of super-peers must be selected from a huge and dynamically changing network
in which neither the node characteristics nor the network topology is known priori. Often
they use simple strategies such as random selection, when an OP chooses a SP. Although this
technique is simple, it does not deal well with the heterogeneity of the participating peers
both in terms of dynamic capabilities and a content similarity. Thus, simple strategies such as
random selection don’t work.

We broadly define the super-peer selection problem as that of selecting some subset of the
peers in a large scale peer-to-peer overlay network to take a special role, with the designated
super-peer providing service to the ordinary peers. Super-peer selection is more complex that
classic dominating set and p-centers from graph theory, known as the NP-hard problems,
because it must respond to the dynamicity of nodes join and leave (churn) and function in
an environment that is highly heterogeneous. Since the original purpose of super-peer based
P2P systems was to improve performance, we should consider search efficiency and network
performance in the design of the system.

6.3.2 Super-peer Distribution Criteria

The super-peers must be distributed throughout the peer-to-peer overlay network in a topo-
logically sensitive way to meet one or more of the distribution criteria listed below.

• Access: ordinary peers must have low latency access to one or more super-peers. Access
can be measured in hop counts or delay.

• Dispersal: super-peers must be evenly distributed throughout the overlay network; they
should not be clustered within only a few subregions of the overlay.

• Proportion: a pre-specified global ratio of super-peers to ordinary peers must be main-
tained to meet application-specific performance requirements.

• Load balance: super-peers should not serve more than k ordinary peers, where k can be
configured locally based on the resource capability of each super-peer.

Note these criteria are inter-related in that specification of requirements for one may impact
another, or a given application may require multiple criteria.
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6.3.3 Dominating sets, p-centers, and leader election

A wealth of research in graph theory, location theory, and distributed computing provides a
formal foundation for the super-peer selection problem. The basic dominating set problem
is the problem of finding a minimal subset of the vertices in graph G, called the dominator
set, such that every node is either a dominator or adjacent to a dominator. Dominating set
problems and algorithms are described thoroughly in [HHS98]. Most versions are NP-hard.

Distance domination seeks to find a minimum size d-dominating set such that the distance
from an arbitrary node to a dominator is ≤ d. Multiple (c,d)-domination requires that every
peer be within distance d of c dominators. Colored domination presumes that each node in
graph G has an associated color from the set c1, c2, ...cn. A dominating set of color ci is one
in which the dominators are all of that color. Colored domination can be used to model
heterogeneous networks in which only certain nodes are qualified to be dominators.

A secure dominating set is a subset of vertices S such that for any vertex v not in S there
exists a neighbor u of v in S such that, if we add v to S and remove u from S, we get another
secure dominating set S. A global defensive alliance is a variant of dominating set where the
set S is such that every vertex v not in S has a neighbor in S and every vertex v in S has a
majority of its neighbors in S. A global offensive alliance is such that every vertex not in S
has a majority of its neighbors in S. A k-defensive dominating set is a set of vertices that can
counter an attack on any k vertices where an attack on a vertex must be countered by itself or
by a neighbor.

The p-center problem is applicable when placing a fixed number of super-peers in a network.
Algorithms and variations on this NP-hard discrete location problem are found in [HM79]. The
p-center problem is the problem of finding a subset of p vertices in a graph G, called centers, to
minimize the maximum (or total) distance between a non-center node and its nearest center.
Colored p-centers can be used in a colored graph for the problem of finding a subset of pi

vertices of color ci to minimize the above distance criteria.
The classic leader election problem from distributed computing differs from super-peer

selection in that the former assumes all nodes vote (directly or indirectly) on the choice of
each super-peer. Leader election algorithms are not scalable because they require broadcasting
or passing a token to all nodes. The best known leader election protocols electing a leader
(typically the node with highest ID number) under various fault tolerant scenarios, such as
Ring, Bully, etc.

Heuristic algorithms developed for these classic problems have been utilized in the field
of networking, but their applicability is usually limited to smaller scale, static networks. For
the most part, they involve centralized algorithms or high message passing overhead. These
algorithms were not designed for large scale peer-to-peer networks that exhibit a high degree
of churn and that are dynamically heterogeneous.

6.3.4 Gnutella : Super-peer selection

The best know example of super-peer selection in a peer-to-peer application is the gnutella [gnu]
protocol for selection of ultrapeers - peers with sufficient bandwidth and processing power to
serve as proxies for other peers. The use of ultrapeers reduces network traffic and speeds up
content delivery. In gnutella, any peer can select itself as an ultrapeer if it meets the following
requirements : it has been up for at least 5 minutes, has high bandwidth, sufficient processing
power, able to handle a large number of simultaneous TCP connections, and if not behind any
firewall or NAT. The ultrapeer selection protocol dynamically adjusts the number of super-
peers as follows: if a leaf peer cannot find an ultrapeer with free slots, it can promote itself
to be an ultrapeer. Ultrapeers also can downgrade themselves when they are no longer serve
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as any leaf nodes, or through negotiation with nearby peers. In term of cluster size, there is
a tradeoff between aggregate and individual load. It is good to choose a cluster size that is
small enough to keep a reasonable individual load and provide reliability to the system, but
large enough to avoid the knee in aggregate load when cluster size is small. For PALMS-SP,
we employ a simple heuristic protocol for super-peer selection.

6.3.5 SOLE: Super-peer selection in structured overlay networks

SOLE is designed to select a group of super-peers in a structured overlay network, with a goal of
keeping the super-peer to ordinary peer ratio stable as peers join and leave the overlay. SOLE
also maintains low access from ordinary peers to super-peers and provides load balancing for
each super-peer.

A DHT (Distributed Hash Table) built on a structured overlay network such as CAN
[RFH+01], Chord [SMK+01], and Pastry [RD01] makes use of a symmetric, regular node label
space, in which each physical node owns a virtual subspace in the overlay. In these structured
overlay networks, a compact node label expression can encode a (large) collection of virtual
nodes. SOLE exploits this notation and uses a node label expression to designate a subset
of the virtual node label space as super-peers. The super-peer label expression is stored in
the DHT for fast and easy lookup. The number of super-peers can be expanded simply by
changing the node label expression. Because a structured overlay network maps physical nodes
to virtual subspaces in a manner that is sensitive to both density and topology, the super-peers
are evenly distributed among physical ordinary peer nodes and every ordinary peer has one or
more nearby super-peers.

Initiation of super-peer selection: A node initiates the super-peer selection procedure
for some service by hashing information about the : service into the DHT: the public key
of the initiator and the super-peer selection policy. This policy contains the super-peer label
expression, the minimum criteria for a node to be a super-peer, and maximum lifetime of
a super-peer. An ordinary peer can discover the identity of super-peers for this service by
accessing the DHT using the service related key to lookup the super-peer label expression.

super-peer takes charge of the service: The initiator can send a message towards the
super-peer labels to inform the chosen super-peers. The notification is done via multicast in
the overlay network. Each physical node that owns a node whose label matches the super-peer
label expression will receive the message and become a super-peer. Alternatively, a super-peer
takes charge upon receiving the first request from an ordinary peer.

Ordinary peer joins service: If an ordinary peer wants to join a service, it looks up
the super-peer label expression in the DHT. The ordinary peer can then figure out the nearest
super-peer in the virtual overlay according to the label-based routing protocol. The structured
overlay network provides bounded virtual routing with path length proportional to the distance
between labels in the label space. In CAN the ordinary peer uses the Cartesian distance between
its own label and the super-peer label to estimate distance. In Pastry, the ordinary peer uses
the bit-wise XOR operation to compute the label distance from which it estimates the physical
distance.

Many peer-to-peer applications built on structured overlay networks can benefit from SOLE.
For example, SOLE can be used to dynamically select super-peers to act as rendezvous points
for applications such as cycle sharing, publish/subscribe, or storage sharing. Research in re-
source discovery in peer-to-peer cycle sharing systems has shown that if rendezvous points
are used to collect resource information and to match queries from clients, the performance
will be dramatically improved compared with probing-based or advertisement-based resource
discovery methods.
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Figure 6.4: Illustration of PoPCorn repulsion protocol.

6.3.6 PoPCorn: Super-peer selection on a coordinate-based overlay network

PoPCorn assumes an n-dimensional Euclidean coordinate space using an Internet coordinate
system such as GNP [NZ02] or Vivaldi [DCKM04]. PopCorn is suited for applications that
wish to select a fixed set of k super-peers and distribute them evenly throughout the overlay,
to perform a service such as security monitoring, protocol testing, or data repositories. PoP-
Corn’s primary distribution criteria, dispersal, is achieved by maximizing the sum of inter-node
distances between all pairs of super-peers. PoPCorn also achieves good access from ordinary
peers to super-peer, and can be easily extended to address heterogeneity, adaptability, and
fault tolerance.

The PoPCorn protocol selects k super-peers by dispersing k tokens through the overlay
coordinate space using a repulsion model among the tokens, analogous to forces among charged
particles. Each token represents one of the super-peers which moves through the overlay based
on the forces exerted on it by other tokens. When equilibrium is reached, each node holding a
token is selected as a super-peer.

Initial Token Placement: The Initiator sends out k tokens to random peers in the
overlay. Each peer can receive at most one token. Any peer which receives a token becomes a
potential super-peer. The initiator can distribute the tokens itself or it can ask its neighbors
to help distribute tokens.

Token Adjustment: The repulsion model is used to adjust the location of the tokens.
After a node receives a token and becomes a potential super-peer, it will start a scoped gossiping
session with its neighbors to tell them the coordinates of the token it holds. Whenever a
gossiping message arrives, a potential super-peer will recalculate the combined force vector of
repulsions from nearby tokens. If the magnitude of the combined repulsions exceeds a threshold
TR, this potential super-peer will pass its token to the neighbor whose position is closest to
the direction of the combined repulsion vector.

Figure 6.4 illustrates the repulsion model with a simple example in which the nodes are
evenly distributed in a 2-dimensional Euclidean space. There are three potential super-peers:
A, B, and C. Node A receives two repulsions RC and RB, from nodes C and B, respectively.
The combination of the two repulsions is vector R. Among A’s neighbors, F has the smallest
angle with R (∠ RAF is the smallest). If the magnitude of R exceeds A’s threshold, A will
pass its token to node F , which will became a new potential super-peer.

PoPCorn was designed as part of the CCOF (Cluster Computing on the Fly) [ZL04] project
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for peer-to-peer cycle sharing (harnessing idle cycles throughout the Internet). PoPCorn places
tasks that collectively form a distributed point-of-presence (PoP) application into a cycle shar-
ing overlay network. PoP applications typically have low CPU and moderate communication
requirements. Examples include security monitors, Internet measurement monitors, and dis-
tributed protocol testing. Compared to volunteer systems, like NETI@home, PoPCorn can
better satisfy the distribution criteria and place tasks evenly throughout the overlay.

6.3.7 H2O : Super-peer selection in unstructured overlay networks

The H20 (Hierarchical 2-level Overlay) protocol [LZL+05] for super-peer selection is a dis-
tributed negotiation protocol for unstructured overlay networks. It is essentially a scalable
protocol for multiple (c, d) colored domination that addresses the following super-peer selec-
tion requirements: access, load balance, and fault tolerance in a dynamic and heterogeneous
environment, and some security issues.

H20 is currently used to create a 2-level hierarchy for communication among security moni-
tors within the Sequoia collaborative security monitoring system. The super-peers form them-
selves into an overlay network which is utilized as a backbone for fast and secure information
dissemination.

6.3.8 PALMS-SP : Super-peer selection Mechanism

In this section, we demonstrate that many peer-to-peer and networking applications are seeking
solutions to variations on the same fundamental problem. We first define a general model for
the super-peer selection problem, describing its key requirements and challenges. We show
how the super-peer selection problem is related to dominating set and p-centers problems, and
describe how the super-peer selection problem is instantiated in several well-known peer-to-peer
applications.

Standard networking techniques such as random selection of peers, or flooding-based search
for suitable SP have significant drawbacks. SPs selected by a random strategy may not be the
best and flooding-based searches for a large number of SP neither scales nor adapts well to
dynamic changes in network. Therefore, when the OP selects the SP, we must consider how
well the SP can deal with queries to provide OP’s requested files as accurately and quickly as
possible.

We adopt the super-peer selection protocol which is similar to the H2O (Hierarchical 2-
level Overlay) [LZL+05] protocol for super-peer selection. The basic idea behind super-peers
management mechanism for PALMS-SP is simple and intuitive. Ordinary peers with similar
locality e.g., IP addresses are connected to the same super-peer. At the initial stage, all nodes
start as ordinary peers. Nodes may switch role at will. The decision process is completely
decentralized. An ordinary peer selects one super-peer to send queries and share resources.
Since the ordinary peer depends on super-peer’s capabilities, the ordinary peer should select
the super-peer which can provide it with the best service. There are many metrics that may
be used to select the best super-peer, such as average response time, bandwidth, processing
capabilities, storage and so on. These metrics may have different weights depending on the
objective. For PALMS-SP, we focus on response time, bandwidth and processing capabilities.
In order to be selected as super-peer, ordinary peer must obtain reasonable scores for all the
metrics. A super-peer can switch back to ordinary peer role only when a super-peer has lost
all its clients due to nodes leaving or crashing. Super-peers exchange connected ordinary peers
information at the super-peers layer. Information of connected ordinary peers is encapsulated
into a UDP packet and exchanged among super-peers periodically.
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Super-peer Advertisement: A node capable of serving as a super-peer advertises itself
to its neighbors within a certain scope. The advertisement includes information about its
qualifications to be a super-peer (such as trust level, uptime, bandwidth, and neighborhood
size). Each advertisement is propagated a certain number of hops (set by each individual super-
peer) and carries with it the route travelled, i.e. an ordered list of the overlay nodes visited.
This information is used by ordinary peers as part of the selection criteria. A node that receives
an advertisement message caches the advertisement about the potential super-peer in its local
cache.

Super-peer Search. If a new node want to find super-peers, it first consults its local
cache for super-peer candidates. If there are no suitable candidates in the cache, it queries
its immediate neighbors. If a contacted neighbor is a super-peer, it replies to the requestor
with its qualifications. If a contacted neighbor is not a super-peer, it replies with entries from
its local cache and the requestor will cache these new responses. The requestor then chooses
the best candidate(s) according to its own criteria, and applies to those candidate super-peers.
The contacted super-peers can confirm or reject such requests. If the requestor does not hear
from anyone within a given time interval or is not satisfied with the current super-peers, it has
several choices: if it is qualified, it can declare itself a super-peer and begin the advertisement
protocol; it can join the overlay at another node, or it wait for a random amount of time and
try again.

The super-peers form themselves into an overlay network which is utilized as a backbone for
fast and secure information dissemination. Only nodes that hold a security certificate (obtained
from a central authority) are eligible to be super-peers. An ordinary peer can check the trust
level information in the certificate presented by a super-peer. An ordinary peer can also choose
a super-peer based on trust-based routing criteria by evaluating the trust level of nodes along
the path to the potential super-peer.

6.4 PALMS-SP : Scheduling Algorithm

Given the buffer map of a node and that of its partners, a schedule is to be generated for
fetching the expected segments from the partners through the pull and push mechanisms. For
a homogenous and static network, a simple round-robin scheduler may work well, but for a
dynamic and heterogeneous network, a more intelligent scheduler is necessary. Specifically, the
scheduling algorithm strikes to meet two constraints: the playback deadline for each segment,
and the heterogeneous streaming bandwidth from the partners. If the first constraint cannot
be satisfied, then the number of segments missing deadlines should be kept minimum. This
problem is a variation of the Parallel machine scheduling, which is known NP-hard. It is thus
not easy to find an optimal solution, particularly considering that the algorithm must quickly
adapt to the highly dynamic network conditions. Therefore, we resort to a simple heuristic of
fast response time.

6.4.1 PALMS-SP : Pull Mechanism

The main algorithms used for peer selection for pull and push mechanisms are an altruistic
algorithm. PALMS-SP’s pull heuristic algorithm first calculates the number of potential sup-
pliers for each packets (i.e., the partners containing in their buffers). Since a packet with less
potential suppliers is more difficult to meet the deadline constraints, the algorithm determines
the supplier of each packet starting from those with only one potential supplier, then those
with two, and so forth. Among the multiple potential suppliers, the one with the highest
bandwidth and enough available time is selected. The main purpose of the pull method is to
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Input:
bw[k] : bandwidth from neighbor k
num suppliers : number of suppliers
bm[i] : buffer map of connected node i
deadline[j] : deadline of packet j
expected set : set of packets to be pulled
set neighbors : number of neighbors of the node

Scheduling :
for packet j ∈ expected set do

Make num suppliers = 0
for l ∈ {1..set neighbors}
• Calculate Tj , Time for Transmitting packet j :
Tj = deadline[j] - current time
num suppliers = num suppliers + bm[l, i]

end for
end for
if num supplier=1
• Potential supplier = 1
for j ∈ {1..expected set}
supplier[j] ← argr{bm[r, i]=1}
end for j

else
• Potential Suppliers > 1
for j ∈ {1..expected set}

for r ∈ {1..num suppliers}
• Find r with the highest bw[r] and enough

available time t[r, j]
supplier[j] ← argr{ bw[r] > bw[r′],

t[r’,j] > t[r,j],r,r′ ∈ set suppliers}
end for

end for
end if

Output supplier[j]
Do Pull packets from supplier[j]
Do Update Buffer Map

Figure 6.5: PALMS-SP : Pull Method Heuristic Algorithm
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Input:
set clients : number of connected client nodes
bm[i] : buffer map of connected client node i
deadline[k] : deadline of packet k
expected set : set of packets to be pushed

Scheduling :
for packet k ∈ expected set do

for l ∈ {1..set clients}
• Find Packet with the highest time-stamp :
Tk = deadline[k] - current time

end for
end for

for receiver ∈ {1..set clients}
• Roulette Wheel Selection for receiver

end for
Output receiver[k]
Do Push packet to receiver[k]

Figure 6.6: PALMS-SP : Push Method Algorithm

request the rarest packets among those that are locally available, and to distribute the request
across different possible suppliers. The algorithm for pull methods is similar to the heuristic
used in DONet [ZLLY05] and BitTorrent [Coh03]. The pull algorithm is shown in Figure 6.5.

Using the information gathered from the buffer map exchanged among neighbor sets, pack-
ets that are rarest across the neighborhood are requested with higher priority than more com-
mon ones. Packets with the same number of suppliers are randomly requested from one of the
neighbors that can provide them. This is to limit the load on any single peer.

6.4.2 PALMS-SP : Push Mechanism

The push mechanism is the process of packet delivery by a super-peers to connected clients.
Inspired by the work conducted by [BLBS06], the push mechanism for PALMS-SP employs two
simple techniques too. In a nutshell, the push mechanism consists of a proactive component
where data packets are pushed forward by super-peer to connected clients, and a reactive
mechanism where packets are pushed forward based NACKs information received.

In order to increase delivery ratio, each super-peer at the super-peers layer, proactively send
data packets to connected ordinary peers. The priority of data packets to be pushed is based
on the least frequently used (LFU) policy. Moreover, due to the unreliability of the network
link or a neighbor failure, some of the packets are lost during transmission. An overlay node
can detect missing packet using gaps in the packet sequence numbers. This information is used
to trigger NACK-based re-transmission through the next interval of push mechanism for the
super-peer. Thus, with the help of the push mechanism, packets are pushed and received at
the receiver nodes at a second time interval. A good selection strategy is required to distribute
the packets. This is to ensure that each super-peer pushes packets that are not too close to the
playout deadline and helps to reduce redundancy in push packets. Push packets also take into
account the NACK requests from connected nodes. The push algorithm is shown in Figure 6.6.

For the push packet scheduling, each super-peer tries to allocate packets that are least
frequently used (LFU) into the Super-Peer Packet Map, SPPm to be pushed. A Super-Peer
Packet Map, SPPm consists of node id and packet sequence number. A simple roulette wheel
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Figure 6.7: PALMS-SP : Delivery Ratio as function to Group Size.

selection scheme is applied for the next time interval for each super-peer to push the available
segments. Packets with the highest time-stamp or least sent will be given higher priority to
be allocated into the Super-Peer Packet Map, SPPm. Each super-peer keeps a counter of how
many times each packet is sent. Packets with the least number of times sent will be chosen.
In addition to that, packets that required re-transmission based on NACKs received will be
allocated into the Super-peer Packet Map, SPPm.

6.5 Simulation Scenario

In this section, we perform extensive simulations to study the performance of PALMS-SP.
Simulations on the algorithms’ behavior test for under different user arrival/ departure patterns,
different network sizes, bandwidth distributions, and streaming rates using network simulator
ns-2 [ns2].

6.5.1 Simulation Parameters

In this section, we first describe the simulation setup and parameters for PALMS-SP in the
Network Simulator, ns-2 environment.

1) Video Data: The length of the video is 120 minutes (a typical length for a movie).
2) Video Coding: We used a video stream that is Multiple Description Coding (MDC)

encoded with 5 descriptions. For simplicity, we assume that all descriptions have the same
constant bit rate of 100 Kbps. Therefore, the rate of the full quality version of the stream is
500 Kbps.

3) Peer Parameters: The incoming access link bandwidth for all peers are set to 500 Kbps.
The incoming access links of all peers are set to 500 Kbps so that each peer can easily receive the
full quality playback rate. The buffer length is set to 30 seconds. The playback starts 10 seconds
after receiving the first packet. In all our experiments we use a heartbeat period of 5 seconds for
all simulated protocols. The interval for the next round of push mechanism is set for every 5
seconds. Table 6.1 shows simulation parameters used in the evaluation of PALMS-SP and their
values. Let NP , NSP , and NOP mean the number of peers, super-peers, and ordinary peers
in each overlay network, respectively. Since there are two roles, a super-peer and an ordinary
peer, in each network topology, the number of peers in the network topology is equal to the
number of super-peers and ordinary peers in the network topology (NP = NSP + NOP ). Each
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Parameters Assigned Values
Number of peers, NP A
Number of super-peers, NSP A/10
Number of ordinary peers, NOP A-A/10
Number of clusters, Nc A/10
Cluster size CSize A/10

Table 6.1: Simulation Parameters for PALMS-SP
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Figure 6.8: PALMS-SP : Delivery Ratio as function to Group Size.

cluster has only one super-peer, i.e. the number of clusters is equal to the number of super-
peers (NC = NSP ). The cluster size CSize shows the number of a super-peer and ordinary
peers in a cluster and is defined as NSP /NC +NOP /NC = (NSP + NOP )/NC = NP /NC . Here,
the number of clusters multiplied by the cluster size shows the number of peers in the network
topology (NP = NC ×CSize). A link between a super-peer and an ordinary peer is symmetric
and a link between super-peers may be asymmetric.

4) Network Topology: Topology is generated by using Georgia Tech Internetwork Topology
Models (GT-ITM) generator [Zeg96]. The delay on the access links are randomly selected
between 5 ms to 25 ms.

5) Performance Metrics: We use three basic Quality of Service (QoS) performance metrics,
i.e., Average Delivery Ratio, Delivery Latency and Data Overheads.

6.6 Simulation Results

We have examined the impact of heterogenous bandwidths and different nodes arrival/departure
patterns on the performance of PALMS-SP streaming. We also study the three metrics of in-
terest: Delivery quality, Delivery latency and Data overheads. We compare the push-pull
protocol performance of PALMS-SP with two existing streaming protocols : DONet [ZLLY05]
and Chainsaw [PKT+05]. Both DONet and Chainsaw are quite successful in term of implemen-
tation of live streaming application and both streaming protocols employ pure pull mechanism.
However, DONet employs a rarest-first strategy as the block scheduling method, and select sup-
pliers with the most surplus bandwidth and enough available time first. Chainsaw on the other
hand, uses a purely random strategy to decide what blocks to request from neighbors.
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Figure 6.9: PALMS-SP : Average Delivery Ratio as a function to ON/OFF Period, T(s). Group
size = 1000.

6.6.1 Comparison of Delivery Quality and Scalability for PALMS-SP

Content delivery among peers is performed using the combination of push scheduling coupled
with pull requesting by child peers. Each peer receives content from all of its connected
neighbors and provides content to all of its neighbors peers in the overlay. The requested
packets from each neighbor are determined by a packet scheduling mechanism. Given a peer’s
playout time as well as the available content and available bandwidth among its supplier peers,
this receiver-driven packet scheduling mechanism should select requested packets from each
supplier peer in order to maximize its delivered quality, i.e., accommodating in-time delivery
of requested packets while effectively utilizing available bandwidth from all parents. In order
to increase the content delivery, PALM-SP employs push mechanism at the super-peers layers.
Moreover, due to the unreliability of the network link or a neighbor failure, some of the packets
are lost during transmission. A node in the overlay network can detect any missing packets using
gaps in the packet sequence numbers. This information is shared with connected neighbors and
used to trigger NACK-based re-transmission through the next interval of push mechanism for
the super-peer. Thus, with the help of the push mechanism, packets are pushed and received
at the receiver nodes at a second time interval

Maintaining continuous playback is a primary objective for streaming applications. To
evaluate continuity, we define delivery ratio to represent the number of packets that arrive
at each node before playback deadline over the total of number of packets encoded. We set
the streaming rate as 500kbps. Figure 6.8 shows the average delivery ratio for PALMS-SP
in comparison to PALMS, DONet and Chainsaw. From the result, we can observe that the
performances for PALMS-SP, PALMS and DONet remain almost the same when group size
increases. This is an indication that the performance of swarming based protocols or data-
driven protocols is not affected by group size. In other words, swarming protocols have a good
scalability. However, Chainsaw method decreases more in comparison to PALMS-SP, PALMS
and DONet. As shown in Fig. 6.8, PALMS-SP has 2% gains compared to PALMS, 20% gains
compared to DONet and over 45% gains compared to Chainsaw.

Another key question is how PALMS-SP streaming mechanism scales with the number of
participating nodes. Figure 6.8 clearly shows as the overlay network sizes grows, the delivery
quality is almost independent of the overlay network size. As summary, PALMS-SP is scalable
in terms of both overlay size and streaming rate.
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Figure 6.10: PALMS-SP : Average Delivery Ratio as a function to Streaming Rate. Group
Size is 1000.

6.6.2 Performance under Dynamic Environment for PALMS-SP

The high connectivity of our network topology and the flexible choice of neighbors allows to
build up and exchange buffer map information quickly. Several scenarios have been considered
in which a large fraction of peers leaves simultaneously. It turns out that it is easy to maintain
the topology and to recover even from such massive concurrent network changes.

We also tested the performances of PALMS-SP in comparison to PALMS, DONet and
Chainsaw under dynamic network environment. We set all the nodes to join in an initialization
period of around 1 minute, and then we set each node changes its status according the ON/OFF
model. The node actively participates the overlay during the ON period, and leaves (or fails)
during the OFF period. Both ON and OFF periods are exponentially distributed. Figure
6.9 shows that a shorter ON/OFF period leads to a lower delivery ratio. However, the overall
delivery ratio for PALMS-SP is higher in comparison to PALMS, DONet and Chainsaw because
the additional push mechanism employed at the super-peer layer is able to help to recover from
a vast majority of losses. Note that Chainsaw displays the poorest performance in term of
delivery ratio.

6.6.3 PALMS-SP : Comparison of Different Streaming Rate

We also examine the correlation between the delivered quality and the streaming rate. Figure
6.10 shows that as the streaming rate increases, the delivery ratio for PALM-SP remains at
a relatively high delivery ratio. Even when the streaming rate reaches 500Kbps, its delivery
ratio still remain above 80%. In summary, the result reveals that the network capacity of
PALMS-SP is sufficient to support the streaming session with streaming rate of 250–500Kbps.
As shown in Fig. 6.10, PALMS-SP has 2% gains of delivery ratio compared to PALMS, 5%
gains of delivery ratio as compared to DONet and over 11% gains as compared to Chainsaw.

6.6.4 PALMS-SP : Comparison of Data Overheads

PALMS-SP manages the membership for all nodes in a fully distributed fashion. Each node
keeps partial information about other nodes, and gossips these information to preferentially
chosen neighbors. Group membership management protocols are crucial to multicasting. They
provide applications with the dynamic membership information. Due to large overhead, tradi-
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Control Overheads
Group Size (control traffics/video traffics) Average Delivery Ratio

PALMS PALMS-SP PALMS PALMS-SP
100 0.0173 0.0180 0.91 0.93
200 0.0175 0.0182 0.90 0.92
300 0.0183 0.0185 0.88 0.92
400 0.0184 0.0191 0.88 0.91
500 0.0196 0.0201 0.89 0.91
1000 0.0232 0.0243 0.89 0.92
2000 0.0244 0.0253 0.90 0.92
4000 0.0296 0.0312 0.90 0.92

Table 6.2: Comparison of Control Overheads/Delivery Ratio for PALMS-SP & PALMS

tional protocols are not suitable for large-scale P2P networks. As PALMS-SP employs employs
a light-weight gossip protocol, most control messages in PALMS-SP are for exchanging data
availability information between connected neighbors and super-peers. The number of nodes
in a group thus becomes a key factor to the control overhead.

In this section, we compare the overheads of PALMS-SP to PALMS. Table 6.2 shows that
PALMS-SP incurs very low additional data overheads in comparison to PALMS. Control over-
head is defined as the ratio of control traffic over video traffic. The control overheads at different
overlay nodes increase log-arithmically with the increase in group size. The control overheads
for PALMS-SP are slightly higher due to the additional messages such as Super-Peer Packet
Map messages and NACKs. However the amount of increase at each overlay node is essentially
minor, less than 3% of the total overall traffic. We believe the data overheads for PALMS-SP
can be further reduced by increasing the window size. It can be observed that the control
overhead has little relationship with the group size because each node only communicates with
its neighbors and super-peer, which demonstrates the good scalability of our proposed protocol.

6.7 Summary

In this chapter, we presented PALMS-SP, a two-layer super-peer based P2P system for live
media streaming. Our system’s innovative and simple features are designed with the usage
of the combination push-pull protocol and the presence of two-layer super-peer based overlay
network that leverages on the heterogeneity of connected nodes. In order to successfully de-
ploy PALMS-SP streaming services, we proposed push-pull mechanism to address the issue of
delivery quality and delivery latency. In this framework, the existence of super-peers improves
delivered video quality by incorporating the proactive and the reactive push packets mecha-
nism. We discussed the key design issues of PALMS-SP, and proposed an intelligent scheduling
push-pull algorithm, which enables efficient streaming for medium-to-high-bandwidth contents
with low control overhead.

We evaluated the performance of PALMS-SP in comparison to PALMS, DONet and Chain-
saw. Based on simulation results conducted over Network Simulator, ns-2, the performance of
PALMS-SP is quite acceptable for live media streaming. Its control overhead is reasonably low,
which is around 3% of the video traffic, and this ratio remains unchanged with an increase of
the overlay size. As compared to other existing streaming protocols, the playback continuity of
PALMS-SP is much better, particularly under highly dynamic environments with nodes leaving
and joining at a high rate.

Our results also show that PALMS-SP has an easy and fast startup time, due both to its in-
trinsic simplicity. PALMS-SP also delivers quite a good playback quality even under formidable
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network conditions i.e., heterogeneity of network bandwidths, different user arrival/departure
patterns, different network sizes, and different streaming rates. ¤



CHAPTER 7

Conclusions

A conclusion is the place where you got
tired of thinking.

Arthur McBride Bloch. Author of
Murphy’s Laws

7.1 Conclusions

The previous chapters presented several methods and models based on push-pull scheduling
algorithms for live streaming system. The main goal for these methods is to create a large-scale,
self-organizing overlay network with simple network construction and maintenance mechanisms,
and the ability to deliver high-bandwidth data streams across a highly volatile and transient
node population. We also hope that these efforts are able to reduce the constraints to be
satisfied by any involved node, so to avoid the exclusion of significant subsets of users with
asymmetric connections lacking a sufficient upstream bandwidth, and moreover we take into
the consideration of the contribution of each peer to the system. A feature we wish to develop
that is resilient towards dynamics of peers arrival and departure, or churn and ability to serve
low-rate-contributing peers normally, as long as the system capacity is under-utilized, and to
gently decrease their service level when scarcity appears.

Chapter 2 introduced the background information about the basic concepts and terminology
of Peer-to-Peer (P2P) networking, as a preface for understanding how a P2P streaming system is
able to provide better solution for streaming multimedia over the Internet. Next, we discuss the
challenges of streaming service over P2P networks as they inherent instability and unreliability.
Finally, we look at several streaming protocols and projects that have been proposed as P2P
overlay streaming.

Based on the recent researches and developments on P2P streaming system, we focus our re-
search on unstructured overlay network where PALMS (P2P Unstructured Live Media Stream-
ing) was proposed. Chapter 3 presented the main design and implementation. By coupling
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push and pull streaming scheduling, we noticed improvements in the delivery quality of live
streaming, as shown by the experimental results. Furthermore, we evaluated PALMS by sim-
ulations conducted using Network Simulator, ns2. We examined the impact of heterogenous
bandwidth and free-riders on the performance of PALMS streaming. We also study the three
metrics of interest: Delivery Quality, Delivery Latency and Data Overheads.

However there are some disadvantages for PALMS. Mainly PALMS faces two main problems
- high volume of traffic and lack of monitoring. This because PALMS is based on data-driven
receiver-based P2P overlay network. Similar with swarm-like content delivery mechanism of
BitTorrent-style networks where all participants share resources in an unstructured P2P net-
works. These approaches, although similar in nature, each have their own distinct disadvan-
tages, especially when considered in relation to a scientific research community utilizing volun-
teer resources. However, the swarm-like content could leads to high volume of traffic. A client
could send consecutive requests for packet lists to connected neighbors. A possible solution for
this problem would be to have a group peers to monitor the requests made by connected nodes.
Due to the distributed nature of unstructured overlay network of PALMS, lack of monitoring
is one of the disadvantages of the PALMS approach. PALMS unstructured overlay networks
have multiple peers that send multiple traffic to other peer. This may introduces extra data
overhead for retransmits, communication and redundancy if no proper monitoring system is
employed.

The extension proposed in chapter 6 is part of the solutions to address this issue. An ex-
tension to PALMS, termed as PALMS-SP - a super-peer based two-payer P2P overlay network
that focuses on the monitoring aspect to improve the latency between peers and delivered
streaming quality of live media streaming. PALMS-SP is based on simple features that are
designed with the usage of the combination push-pull protocol and the presence of two-layer
super-peer based overlay network that leverages on the heterogeneity of connected nodes.

7.2 Directions for Future Research

The work in this dissertation has opened up some interesting avenues for future research. Some
of these ideas directly extend the PALMS architecture while others touch upon the application
of our work to other research problems.

7.2.1 Planet Lab

PlanetLab is a group of computers available as a testbed for computer networking and dis-
tributed systems research. It was established in 2002 and as of October 2007 was composed
of 825 nodes at 406 sites worldwide. Each research project has a ”slice”, or virtual machine
access to a subset of the nodes. With PlanetLab, it is possible to test the performances of
PALMS and PALMS-SP under actual distributed systems.

7.2.2 Network Coding

Network coding is a field of information theory and coding theory and is a method of attaining
maximum information flow in a network. The core notion of network coding is to allow mixing of
data at intermediate network nodes. A receiver sees these data packets and deduces from them
the messages that were originally intended for that data sink. In order for PALMS to achieve
better streaming quality, network coding could improve overall P2P network performance.
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7.2.3 Simplified Streaming Scheduling Algorithm

As part of the enhancement for PALMS and PALMS-SP, we hope to evaluate other streaming
scheduling algorithm in order to improve content delivery and reduce end-to-end delay. We plan
to extend the idea of quality adaptation to other congestion control schemes and investigate
the implications of the details of rate adaption on our mechanism. ¤
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