
修士論文

Balanced Placement on a Cluster File
System using Request Graph Early

Reservation

ファイル関連グラフを用いたクラスタファイルシ
ステムの負荷分散に関する研究

指導教官
松尾 啓志 教授
津邑 公暁 准教授

名古屋工業大学大学院工学研究科
修士課程情報工学専攻

平成 19年度入学 19417643番

Honsali Khalil

平成 20年 2月 5日

Abstract

In this work, we investigate a novel method for balanced placement for a set of

related files on a cluster file system. The propose method assumes knoweldge of the

file set in early reservation settings. The goal of the placement is two fold: first, to

balance the workload on the cluster file system’s I/O nodes, and second to maintain

the relations of the file set in order to minimize the request overhead for both client

and server.

Requests for a set of related files are modelled as a request graph with given prop-

erties such that vertices correspond to request files’ attributes and edges correspond

to probabilities of request dependencies between files. This is similar to the graph

shapes used in task-graph scheduling algorithms, since a request of a file is similar to

a task. Using this graph model, a placement algorithm was developped in order to

optimize placement of the graph such that file attributes and their relationships are

taken into consideration, since both affect the total workload on the system during

request arrival.

The proposed placement is a two step algorithm : the first step is a rating phase that

traverses the graph in breath first search and assigns file requests with highest priority

to storage nodes, based on requests weights and storage nodes metrics. The second

step si a novel advice model that is used to affect the placement decision when two

files are related, i.e. a request for a given file has a high probability to request another

file. The requesting file advices the requested file by adjusting its rating, in order to

have it assigned on the same storage node if the system balance allows it to. Using

this approach, the algorithm tries to place the files while satisfying both constraints:

file request relationships and cluster balance.

A cluster simulator was developped to test the behavior of the presented algorithm.

Randomly generated request graphs with various properties are placed on the clus-

ter using the present work’s algorithm and compared to classical RoundRobin and

Weighted Scheduler algorithms. Client requests that stresses the structure of the re-

quest graph were simulated. The resulting cluster behavior was measured for the

varying parameters and the result have shown that our approach performs usually

better and at worst similar to classical algorithms in terms of cluster balance, and

outperforms them all in terms of graph balance.

Acknowledgements

There is no God but God, to God only we pray, and there is no way or power without

God.

Reverence to my parents, may God reward them with mercy and more++

Respect and Gratitude to my master, Matsuo-sensei, for his valuable teachings.

Peace and Thanks to the Japanese Ministery of Education for their financial support.

Also, thanks to the International Division of NIT for their help.

Peace to all friends, especially Hakeem.

Peace to all teachers and students.

To start, I refer to [Al Fati7a], recited at least 17 times in 5 daily prayers.

Balanced Placement on a Cluster File System using Request

Graph Early Reservation

目次

1 Introduction 1

1.1 Objective . 1

1.2 Overview . 2

2 Background 3

2.1 File Systems . 3

2.2 Computer Clusters . 4

2.3 File Systems x Computer Clusters . 7

2.3.1 Operational Overview . 7

2.3.2 Taxonomy . 8

2.3.3 Software . 10

2.4 Placement, Scheduling and Load Balancing 10

2.5 Related Work . 12

2.6 Lessons Learned . 13

3 Computation Model 15

3.1 Cluster Model . 15

3.2 Request Graph Model . 15

3.3 Placement Scenarios . 16

3.4 The Placement Process . 18

3.4.1 Approach . 18

3.4.2 Rating Model . 20

3.4.3 Advice Model . 21

3.5 Placement Algorithm . 23

4 Implementation 25

4.1 Request Graph Generation . 25

4.1.1 Anatomy of a Request Graph . 25

4.1.2 Generator Utility . 26

4.2 Cluster Simulator . 28

5 Evaluation 30

5.1 Strategy . 30

5.2 Results . 31

6 Conclusion 39

6.1 Self Assessment . 39

6.2 Future Directions . 40

参考文献 42

表一覧

1 Types of File Systems for the Cluster . 11

2 Sample WebGraph Structure. 17

3 Generator Parameters . 28

4 MetaData File Table . 29

5 Slaves Table . 29

6 Experiment Parameters . 30

1 Introduction

1.1 Objective

Over the past decade computer clusters have emerged as the dominant architec-

ture in high performance computing, combining the power of hundreds or thousands

of commodity off-the-shelf computers that can scale to Peta-bytes of storage. Clus-

ter File Systems are one of the core software components on such architectures and

many solutions are already available for different workload environment, providing high

throughput, failure tolerance and incremental scalability. Moreover, with internet data

boom, cluster file systems are being used in web-based service environments. In such

scenarios, data is most often stored in large data structures with complex relationships

and this implies growing demand for higher lever file system designs that understand

the nature of data being stored not only to support efficient processing but also to

guarantee a balanced system and hence a better quality of service.

Traditionally, the utilized approach for the server to be aware of data patterns was

to perform static and/or dynamic statistical analysis of client requests on one side

and of I/O nodes status on the other side, in order balance the system. But this ap-

proach suffers from latencies between the measured workload and the actual workload,

due to the time lag between request arrival, processing and real-time system status.

Moreover, with rigid semantics the server is not aware of the relationships of the data

being stored. Therefore to intelligently manage workload a change in the client/server

interaction is needed.

We propose a novel approach for balancing load on a cluster using information pro-

vided by the client as early request reservations for a set of files. Since the file system

client is the closest software entity to the user, it is possible to assume that the client

knows best the user behavior and hence associated datasets structure, for instance by

the means of statistical accounting of user file operations and usage patterns. Such

information as file size, directory structure, read/write operation frequency, file expiry

rate, link distribution and frequency ...etc, can be acquired by the client before data is

uploaded to the server. This information could be very useful to the server if delivered

beforehand and could greatly impact the cluster overall system performance.

The present thesis statement is: Assuming the Server can receive early information

about the datasets to be stored, can it manage more efficiently its available resources

while maintaing datasets structures?

1.2 Overview

The structure of this report is as follows:

In chapter 2, a background is presented in order to introduce the context of the current

work and explain the problem targetted and the technicalities on which the solution is

based. First, file systems and computer clusters are introduced. Then, the file system

designs that are specific to computer clusters are explained, including operational prin-

ciples, key design issues and concepts, popular cluster file system software and related

technologies. Finally, a brief literature overview of the theories on load balancing and

resource placement are also presented, including related work of task graph scheduling

and data partitioning.

In chapter 3, the models and computations underlying at the core of the present work

are explained. The targetted cluster model is defined. The request graph model, its

properties and important equations are defined discussed. Different senarios for place-

ment of the request graph are examined, including the target scenario. The proposed

approach, computation models and algorithms for balanced placement of the request

graph are defined and discussed.

In chapter 4, the implementation details of the request graph, the cluster simulator

and the request graph generator are given with supporting pseudo-code.

In chapter 5, the evaluation strategy with details about the experiemntal apparatus

and parameters are described. Results of experimentation for the cluster balance and

graph partioning are presented and discussed, including comparison of the proposed

solution with three other algorithms.

In chapter 6, conclusion with discussion about the current research and future direc-

tions are provided.

Finally, the bibliography and appendix sections.

2 Background

2.1 File Systems

A file system, as the name implies, is a software system, i.e., a set of programs that

manage files stored on a hardware medium. File systems are everywhere because they

are necessary to every software working with files, hence it is an extra large area of

research as old as computer science.

A comprehensive introduction to the key terms and concepts associated with the sub-

ject is provided in [1], of which the most important are given below:

• Disk: The storage medium, the hardware, on which files are stored. A disk is

the primary bottleneck of speed on a computer lagging behind several orders of

magnitude from the CPU, the RAM and the network respectively. Continuously

new technologies aim at reducing the speed gap, the latest of which is the Solid

State Drive (SSD). A disk block or sector is the minimum hardware storage unit

and is mostly around 512 to 1024 bytes in modern hardware.

• Block: The smallest unit writable by a disk or file system. Everything a file

system does is composed of operations done on blocks. A file system block is

always the same size as or larger (in integer multiples) than the disk block size,

however the size depends on the scale considered, when 512 to 1024 bytes are usual

block sizes for local usage, high performance systems may use up to 64 Megbyte

block sizes. The reason for smaller block size is that the majority of the Operating

System and text files stored on disk is small, the reason for larger block size is the

large datasets associated with the context.

• Extent: An range of blocks, contains a starting block number and a length of

successive blocks following it on disk, also known as block runs.

• Attribute: A name (as a text string) and value associated with the name. The

value may have a defined type (string, integer, etc.), or it may just be arbitrary

data.

• Metadata: A general term that refers to information about data but that is

not part of it. Metadata in filesystems is information about the files, such as

the length, number of blocks, Stores file owner, POSIX file permissions, Creation

timestamps, Last access/ read timestamps, Last modification of content, This

copy created, Last metadata change timestamps, Last archive timestamps, Access

control lists, Security/ MAC labels, Extended attributes/ Alternate data streams/

forks, Checksum/ ECC ...etc. However, not all systems do support all of the

above..

• Posix Semantics : POSIX stands for ”Portable Operating System Interface”, as

the name suggests it is a family of standards specified by the IEEE organization

with the goal of having compatible interfaces between Operating Systems. The

designation number is 1003. POSIX covers a wide range of concepts, guarantees

for thread concurrency, high performance, but most importantly I/O operations

[2].

The next question that comes into mind is how a file system stores the data it

contains? This depends on the type of file systems. Let us review the two most

popular systems:

NTFS: is the defacto file system for windows operating systems and the successor to

FAT. Beside performance and security related improvements, NTFS has an advanced

metadata support. The Master File Table (MFT) contains all the metadata of all of

the files, and is stored as B-Tree like strucutre for fast indexing.

Ext3: or the third extended file system, is linux’s default file system and an improved

version to ext2, a journaled file system. Its main feature is reliability and scalability. It

belongs to the family of unix file system that use the concept of I-node. The I-node,

or File Control Block (FCB), is an efficient data structure from the B-Tree family

that stores all the necessary metadata about a file, in addition to the pointers to the

location of the file.

2.2 Computer Clusters

A computer cluster can be definded [3] as ”a set of computers that are connected

via a Local Area Network (LAN) and that appear to the external world as a single

entity”. Usually the computers are independent commercial-off-the-shelf (COTS) ma-

chines with a single or multiple processors or cores. A Beowulf system is a typical

configuration using Personal Computer (PC) machines with an open-source Operating

System (OS) installed, typically Unix/Linux. also called PC Cluster, such as the one

shown in Figure 1.

図 1: A typical Beowulf Cluster

A computer Grid is a collection of clusters geographically disparate.

Computer cluster may be tuned to serve specific functions:

• High performance clusters, which are also referred to as computational cluster

systems. These systems are normally utilized to support very large data volumes

(of computational processing). In such an environment, a parallel file system

distributes the processing resources across the nodes, thereby allowing each node

to access the same set of files concurrently (via concurrent read() and write()

requests).

• High availability (HA) clusters, which are designed for fault tolerance or re-

dundancy purposes. As these clusters normally use one or more servers (for data

processing), the servers in the cluster are able to assume processing responsibilities

in case that one or more of them goes down.

• Load balancing clusters distribute the workload as evenly as possible across

multiple server systems, such as web or application servers, respectively.

• Database cluster systems, such as Oracles Real Application Cluster (RAC) plat-

form, which introduce many of the cluster file system features into the application-

layer itself.

• Storage cluster systems, which are utilized between Storage Area Network (SAN)

components and server systems with different operating systems. These systems

provide shared access to data blocks on a common storage media.

Q: Why is it that computer clusters are being used outside the realm of scientific

computing to replace mainframes at the enterprise ?

A: The advantages of clusters are numerous, starting with the cost-to-performance

ration, clusters can provide similar and better performance than mainframes at low-

ercost, moreover it suffices to add new computer nodes to scale up, while mainframes

can not.

Below are some properties of clusters, taken from the literature:

• Scalability[4]: Scalability refers to the system capability to support increasing

numbers of users, and hence data. In computer clusters, the intuitive way to

scale up the system is simply by adding ressources, either as components (CPU,

memory, disk, network) or as whole computer nodes. In this case, it is called

’incremental scalability’, and is probably a property that only computer clusters

can support. In a company as Amazon, these numbers may give an idea about

scalability: 10,000 servers, 1,000,000 clients, 10 million requests / day, 100,000

concurrent active sessions

• High Availability [5]: Always-On Experience For the case of the mainframe

computer, even if there is infinite money to scale up the system using components,

the server is still a single point of failure: if it fails the whole software and data is

inacessible. Computer clusters on the other hand, because of their decomposition,

cannot fail all over at once. According to Google’s datacenter information, at most

one third of the machine is inavailable at some given moment. Consequently, a

great effort is spent on how to prevent loss of data even if computer nodes are

lost, and this is achieved via replication [6]. Clustering is indeed a solution of high

availability by providing redundant servers and hence redundant data.

• Fault Tolerance[7] Highly available data is not necessarily strictly correct data

hen a server instance fails, the service is still available, because new requests can

be handled by other redundant server instances in the cluster. But the requests

which are in processing in the failed server when the server is failing may not get

the correct data, whereas a fault tolerant service always guarantees strictly correct

behavior despite a certain number of faults. Failover is another key technology

behind clustering to achieve fault tolerance. By choosing another node in the

cluster, the process will continue when the original node fails. Failing over to

another node can be coded explicitly or performed automatically by the underlying

platform which transparently reroutes communication to another serve

• Load balancing Load balancing is one of the key technologies behind clustering,

which is a way to obtain high availability and better performance by dispatching

incoming requests to different servers. A load balancer can be anything from a

simple Servlet or Plug-in (a Linux box using ipchains to do the work, for example),

to expensive hardware with an SSL accelerator embedded in it. In addition to

dispatching requests, a load balancer should perform some other important tasks

such as session stickiness to have a user session live entirely on one server and

health check (or heartbeat) to prevent dispatching requests to a failing server.

Sometimes the load balancer will participant in the Failover process, which will

be mentioned later.

When a computer cluster is beyond a certain scale and performance, it becomes a

supercomputer. The organization top500 []

2.3 File Systems x Computer Clusters

This is the combination of file systems on a network of computers, which is a logical

evolution to DAS (Direct Attached Storage), which is limited in terms of capacity and

difficult in terms of price.

2.3.1 Operational Overview

File Systems on Computer Clusters span a range of functional objectives and conse-

quently there are different design approaches for each functional type. However, many

share the basic operational principles shown in Figure 2.

At first the client sends a request to the metadata server asking for the location of

a file in order to access it. The metadata server is the central authority that man-

ages the cluster I/O nodes, keeping track of their status and assiging files to them.

It maintains a metadata table that primarily is a mapping of files, metadata, blocks,

replicas and the nodes on wich they are stored. The server looks up the requested

file metadata on that table as it is stored on a Database or a data structure, and

returns a metdata response to inform the client where the file can be accessed. The

client can subsequently cache this information. Next, the client can finally issue the

file operation and I/O transfer directly with the concerned node. The transfer may

図 2: Operational lifecycle of a Clustered File System

occur in parallel if the file is partitioned into several nodes and usually it is so in order

to improve transfer speed. I/O nodes periodically sends a status report (also called

heartbeat) to the metadata server to report on ressources and workload usage. This

information is crucial to the server for balancing node, taking file placement decisions

and to know if a node is available or not. If a node fails, copies of files called replicas

are maintained to guarantee data availability for the client.

2.3.2 Taxonomy

Unfortunately, there is no concensus on the naming of file systems for the cluster

environment. We base our terminology section based on the literature available.

• Network Attached Storage (NAS) is a technology to attach storage devices

to a network and mount them via network file servers such as NFS.

• Storage Area Network (SAN) is a technology in which storage devices are

connected through a network (usually fiber channel) but appear to the OS as

locally attached.

• Shared-Disk File Systems, also known as SAN File System, is a file system

shared by multiple computers (i.e., cluster nodes) and

• Cluster File Systems, is a term replacing Shared-Disk File System, meaning

the same thing. However, in a Cluster File Systems, nodes may share a local

storage.

• Parallel File Systems is a flavor of Cluster File Systems in which file transfer

between the client and the server occurs simultaneously, hence the word parallel,

and are mainly used for high performance environments.

• Distributed File System are similar to clustered FS but adopt a different ap-

proach, in that clients don’t have direct access to the block interface to storage

but rather interact with the remote OS via a protocol, which seems to provide

better security.

Besides differences in naming issue, some key concepts should be understood:

• Symmetric vs. Assymmetric

In a symmetric FS both the client and the server can reside on the same node.

Moreover, a single metadata server is not required anymore, any participating

node can share the role of a metada server.

• Consistency

It regroups all the issues regarding the state of system and data being correct even

against hardware failures, software crash, multi-threading, caching..etc. From the

database field, consistency is measured by the ACID properties (Atomic, Consis-

tency, Isolation, Durability), if clustered file systems, either strong (pessimistic)

or weak (optimistic) consistencies are supported, where strong enforces the ACID

properties via locking; the weak tends to relax them, and it is the most adopted

approach for its simplicity and effectiveness.

• Stateless vs. Stateful

The notion of state is self-explaining: the server is stateful when it keeps track of

the information about client requests, including file metadata, handles to on-going

operations ..etc, this is a heavy load on the cache operation and mostly difficult to

impelment. Stateless on the other hand are simpler to implement, because they

don’t inforce any consistency issue. Pure decentralized (symmetric) are easier to

support stateless.

• Transparency If the Client knows server/file mapping, the client contact server

directly, hence smaller query processing per client request, but there is risk for

resource contention and/or server failure as the number of client outgrows the

server. On the other hand, if the client contacts any server, there is location

transparency and better load balancing maintained with an incremental scalabil-

ity, but the query processing time is longer.

• Redundancy, Replication

It affects reliability. Redundancy is the same as replication, it consists of storing

multiple copies of the same file, called replicas, on different cluster nodes, this

way even if a node fails the file is not lost. Explicit replication involves failing the

file transfer until the replicas are created, while Lazy replication is a delayed form

and more relaxed.

• Striping , Sieving

Both affect Throughput, or speed of data transfer. Data Striping is a method used

by parallel version of clusterd file systems and consist of sending the file blocks

to multiple nodes simultaneously instead of storing the whole file on a single

node, which improves the throughput. Data Sieving on the other hand, aims at

reducing the request overhead by read contiguous chunks of data from disk even if

the requested data is just part of it, this in order to avoid doing multiple random

accesses.

2.3.3 Software

Many commercial/closed file systems for the clusters have been available since the

90s and until today, such as : Amazon’s S3[8] and Dynamo[9], Google’s GFS[10], HP’s

HFS, SGI’s XFS[11], Microsoft’s DFS[12] and Panasas [13] among others.

Table 1 lists a family of file systems for the cluster that are not only performant but

also open source, which advocates this development approach:

2.4 Placement, Scheduling and Load Balancing

Algorithms developped in the area of Scheduling [16] and Data Placement [17] are

still used today for their simplicity and efficiency:

Data Placement

FirstFit: skip the file requests with data size greater than available and assign the

first one to fit

LargeFit : sorts data and push them into placement queue by largest first, has more

表 1: Types of File Systems for the Cluster

System Architecture Notes

AFS/Coda [14] Distributed, Symmetric POSIX compliant

(CMU) supports offline operations

Ceph [15] Distributed, Parallel

(U. California)

GFS (RedHat) Clustered , Assymmetric almost POSIX

GPFS Clustered, Parallel (IBM)

used on Blugene supercomputer

Gluster Clustered, Symmetric (Gluster)

Parallel

Hadoop Distributed, Asymmetric not-POSIX

(Apache), Yahoo! Clone of GoogleFS

Lustre Clustered, ASymmetric (SUN)

Object-based used on Blugene supercomputer

PVFS2 Clustered, Symmetric POSIX, MPI-IO

(Clemson U.) Parallel

complexity than above

SmallFit : same as above but with inversed priority

BestFit : greedy method to search for all the best receiving node

Job Scheduling Algorithms

First Come First Served (FCFS): as the name implies, it schedules jobs on a first-

come-first-served basis.

Shortest Job First : gives priority to the jobs with the minimum workload require-

ments

Multi-Level Queue Priority : push jobs of different sizes into different queues cor-

resonding to each size, providing granularity and control

Some more complex algorithms are developped usign ANT routing, DCOP using

agents..etc but they usually share the processing overhead as a drawback. Still, heuris-

tics is another method to compete with or improve classical algorithms.

A straightforward technique that is valid for heterogeneous environments is the pe-

riodic system status report sent by participating nodes [18]. The report information

metric consists of a combination of CPU cycles and disk capacity to represent workload

and capacity status. Report message is either broadcast in symmetric systems, or it

is sent to the central authority in assymmetric systems.

Although it may not seem so, randomization in load distribution is still an efficient

technique used in distributed systems, specifically in clusters and peer-to-peer [19].

Randomization’s most attractive advantage is the lighter processing and stability of

behavior over different workload environments. Several techniques are available, note-

ably Random and Pseudo-Random hashing.

Request routing or redirection is a mean of dynamically distributing load on a cluster .

For the case of systems where any server can process the request, web request routing

[20] or DNS rotation [21] is applied. For the case of systems where servers are special-

ized, requests are examined and routed to the specialized server sets [22], an example

of specialization can target the file size, so each server group stores specific file sizes.

Where file sizes are large, such as in multimedia servers, the technique of striping is

applied in order to distribute large I/O requests equally among shared-disks and thus

balance the system [23].

Another specialization approach is termed ”functional decomposition” and is described

in [24].

2.5 Related Work

Task Graph Scheduling[25, 26] is an extensive area of research that grew along

with the adoption of clustered systems in scientific applications. The basic goal is to

schedule a set of related tasks on a set of available processors in order to minimize

total processing cost, known as makespan. Related tasks are modelled as a Directed

Acyclic Graph (DAG) in which vertices represent processing tasks, and edges represent

dependencies between tasks. The weight of the vertices is the processing cost, in terms

of CPU, memory, disk and network resource consumption; and the weight of the edges

is the communication cost, in terms of priority and/or communication time. Figure 3

illustrates a simple example of a task-graph scheduling problem.

図 3: A simple task graph scheduling example

In this example, the root task Ta is always scheduled first. Next, Tc has a small

weight and is highly dependent on Ta, so it is scheduled on the same processors. Next,

Tb has a higher weight and small dependency and so it can be scheduled on another

processor, finally Td remains and can go to any of the two processors but since the

total weight of Ta+Tc is smaller than that of Tb it joins Tb on the same processor.

2.6 Lessons Learned

We summarize our remarks which form the basis of our motivation:

• In scheduling and load balancing, the most popular algorithms are : ROUND-

ROBIN (GPFS, Hadoop, Gluster, Lustre, PVFS2) efficient in terms of network

balance, but does not guarantee load balance. RANDOM (Gluster Lustre) is

efficient in terms of processing overhead, but does not guarantee network nor load

balance. WEIGHTED (Lustre) is efficient in terms of load balance, but requires

extra processing.

• Even if high-throughtput systems have long effectively used striping data across

I/O nodes in round-robin fashion, has been in place for quite some time. Work-

load studies on a number of platforms have shown that noncontiguous accesses

are a common occurrence in parallel I/O workloads that the reduction of opera-

tions outweighs the added data transfer for a large percentage of accesses. This

technique can in fact also benefit systems with high latency networks as well in

that it reduces the number of requests, for which there is often significant startup

time.

• In the work [27] done on CIFS; it has been shown that there is an increase in

the proportion of large files, mainly multimedia files; both studies conclude that

a variable block size is preferrable and that small files, which still constitutes the

majority of the file system space, should be colocated on a single larger block.

The former study also found that the deeper is the namespace the smaller the file

size.

Client applications have much more opportunities to give richer metadata informa-

tion about file access patterns and requests, especially for related files, via higher level

interfaces. This information will certainly help redistribute the data in a way that it

facilitates both server workload balance, and access patterns.

3 Computation Model

3.1 Cluster Model

At first, we have to define the two metrics that affect the availability of a storage

node: space and workload. The Space metric, denoted S, indicates the amount of disk

space available at a node, and is calculated by summing the sizes of all files.

Si =
n∑

k=1

size(fk) (1)

The Load metric, denoted L, indicates the amount of workload required for serving

a file. The heuristics for choosing a load metric are depending on the environment,

we assume that for our simulation case the load need not to faithfully represent all of

the performance affecting factors but should be heuristics that roughly but correctly

translate the actual situations. From literature review in chapter 1, the load is linearly

dependent with the amount of data transferred and the number of requests, while

all the smaller constant factors such as network delay, concurrency cost..etc, can be

gathered in a single variable that we call the Load Unit. Hence, the measure for load is

based on a multiple of load unit and this is assumed to be sufficient for our calculations.

THe laod metric is then calculated by summing for all files in a node, the number of

requests for a file multiplied by its size, multipliled by the load unit LU. We write:

Li =
n∑

k=1

rcount(fk)size(fk)LU (2)

Assuming there are n files in a node i of the cluster. Note that these metrics are

heuristics based on the literature[?], and that these values are static and considered

accurate enough to support our model.

3.2 Request Graph Model

We define a request graph as a directed acyclic graph G(F,R) such that Vertices (F)

represent request files and Edges (R) represent a request relation between files.

The weight of a vertex (f) is defined as a function of its attributes. For now we only

consider two attributes: The size attribute As and the request frequency Al, but this

model can be easily extended to more attributes and metrics. To equally represent

both attributes, the weight of a file is calculated as the product of its attributes. The

weight is deterministic in load balancing decisions and has an effect on both the space

and load metrics, more over, each attribute can affect a metric more than the other:

The size attribute directly affects the space metric and the frequency attribute directly

affects the load mertric, though both are connected.

W (f) = AsAl (3)

Where As is the file size and Al is the request frequency, i.e., the number of times a

file is requested. Hence, we can redefine the cluster space and load metrics for node i,

as follow:

Si =
n∑

k=1

Ask (4)

Li =
n∑

k=1

W (fk)AU (5)

We also define the weight of a relation R(i, j) as the probability that a file fi will

request a file fj . We denote:

R(i, j) = P (j|i) (6)

P (j|i) is a cumulative probability such that the sum of all request probabilities of files

n related to fi is: 1 =
∑n

j=1 P (j|i).
We assume that G has a single entry file that we call the root file, and we place no

other limitations to the graph other than that all vertices are connected.

Table 2 describes a simple webgraph that fits to this model and of which sample

values of attributes, weights and relations are set. Note that if the whole graph is

assigned to a single node, the space and load metrics will be 15 and 30 respectively.

Fig.2a shows the corresponding request graph, where weights (between brackets) and

relation values (on the lines) are shown. The following section is based on it.

3.3 Placement Scenarios

Let’s consider the graph shown in Figure 4, where three placement scenarios A1, A2

and A3 are considered. The squares represent nodes 1, 2 and 3 to which the files of

the graph are to be assigned. The ellipses emphasize the relations that are maintained

if two related files are assigned to the same node. The goal of a placement scenario is

to 1) have balanced workloads on each node (sum of file weights) and 2) maintain as

表 2: Sample WebGraph Structure.

id File Size Freq. Weight Relation(i,j)

0 index 16K 10 10 (0,1)=0.1 , (0,2)=0.3 , (0,5)=0.5 , (0,8)=0.1

1 video 100M 1 5 .

2 img 5M 3 3 (2,3)=0.7 , (2,4)=0.3

3 img1 2M 1 2 .

4 img2 1M 1 1 .

5 html 16K 5 5 (5,6)=0.6 , (5,7)=0.2 , (5,8)=0.2

6 file1 4K 3 3 .

7 file2 4K 2 2 .

8 info 1 1 1 .

図 4: A sample request graph with different placement scenarios

may relations (as many ellipses) as possible.

Scenario A1 is a classic round robin with a left-to-right Breadth First Search (BFS).

At first, index is assigned to node A, then its children (mail, doc, img and video) are

assigned to node B, C, A and B. Then on the second pass, children of doc and img

are assigned, such that html1, html2 and html3 for nodes C, A and B, then img1 and

img2 for node C and A. The load metric for each node is is such that La=16, Lb=7

and Lc=10 which is quite unstable. Moreover, only 2 relations are maintained (see the

ellipses), which are : (index,img) on A and (doc, html) on C.

Scenario A2 represents a weighted BFS combined with a weighted roundrobin, that we

call bestFit approach. It gives priority to files with higher weights and searches for the

least loaded node otherwise roundrobin when nodes are equal. At first index is assigned

to node A, then doc and video to B and C respectively. Then, img to B (or C) and mail

to C. At this level the cluster is such that (La=10, Lb=8, Lc=6). Next C is receiving

html1, and B gets html2 then C gets html3. Now it’s (La=10, Lb=10, Lc=10). At the

end, A receives img1 and B receives img2, so that the assigned workload is La=12,

Lb=11, Lc=10; which is much more balanced than classical roundrobin but still doesn’t

faithfully maintain file relations; again only two relations are maintained on node B

only : (doc, html) and (img, img1)

Finally, scenario A3 is our ideal case where workload is nearly balanced with maximum

file relations preserved, this represents the target of our work and is subsequently called

BLuRGER. At first, index is assigned to A. Then, Doc is assigned because it has the

highest weight and relation, it goes to B. Then img is assigned to B, because its weight-

to-relation product is better than video. Next video goes to C. Next mail is attrated

by index towards node A, although B and C are better. Likewise, html1 goes to B

naturally, but html2 and html3 are attrated to B even if C is a better choice. The same

happens for img1 and img2 that go to C. Here, we notice that the cluster balance is as

follow: La=11, Lb=11 and Lc=11; moreover, most relations are preserved, only video

was isolated but that’s acceptable because of its lower weight. The benefits hence are

two-fold for both the cluster’s balance, and the client’s overhead.

3.4 The Placement Process

3.4.1 Approach

The placement process is a combination of two goals that are sometimes conflicting:

the first goal is to maintain a good cluster balance for both space and load metrics

(which is itself a challenging goal), and this requires placing heavy files on the least-

loaded node. While the second goal is to minimize request graph partitioning by

placing related files on the same node. To satisfy both constraints a combination of

two computation models is required, so that each model satisfy a constraint. For the

first goal, a rating model is proposed to search for the least-loaded node, the rating

strenght is amplified by the ’heaviness’ of a file. For the second goal, an advice model

is proposed to attract files which are strongly related to be placed on the same node.

図 5: The placement process

Figure 5 shows the whole placement process that occurs in two steps. In the first

step, the rating model is used to select a node to which the file will be assigned. The

rating steps works in a way similar to a map-reduce function. In the map phase, or

the actual rating phase, each attribute of the file (As and Al) is rated against the

corresponding cluster node metric (Si and Li). On the reduce phase, the node with

the maximum rating is selected for assignment. All the resource requirements/costs

of the file are taken into consideration via rating and mixed in order to find a node

that best satisfies all requirements by picking the node with the maximum rating. The

selected node for the parent file is used by the advice model in the second step to

adjust the rate of the child file. Both steps are combined to satisfy the current file’s

resource requirements and it’s parent relation requirements. More details about each

step’s model are given in the following subsections.

3.4.2 Rating Model

The principle that lies behind the rating model is simple. Each file request has

resource requirements, and each node has the resources that may or may not satisfy

those requirements. The rating model, as the name implies, is the process by which

the file rates each node with respect to the required resources. The most appropriate

node is obviously the one that has the best rating. This process happens implicitly in

classical weighted algorithms, but it is too simplistic, since the best node is chosen for

the file, and in more sophisticated cases, the files are sorted with their weight priority.

Our added value is two fold: first, there are two dimensions : the attributes dimension

and the metrics dimension, hence more granularity and precision; from which the sec-

ond advantage that the heavy naturally select the least loaded node without required

sorting.

As for granularity, each attribute has an affinity to one or more cluster metrics. For

instance, the size attribute has more impact on the space metric than the load metric,

while the frequency attribute has an impact on the load and not the space. Other

attributes may have affinities to one or more metrics at once. Hence, the rating for

a given node i is the sum of is sub-rates, which are the rates of each attribute with

regard to the corresponding metric(s), we denote:

ratei(file) =
n∑

k=1

ratei(k) (7)

Now, let’s define the rate of each of the attributes (size, frequency) in our mode with

respect to the corresponding metrics (load and space), calculated as follows:

ratei(As) = As
(Smax − Si)

Smax
and ratei(Al) = Al

(Lmax − Li)

Lmax
(8)

The rate is a product of the file attribute and the node metric after the metric is nor-

malized as a fraction of the cluster-wide metric maximum, which we call appreciation.

This heuristic approach is chosen so that : first, the rating mechanism is relative to the

least available node of the cluster (metric max); consequently, the least available node

is least likely to be chosen (appreciation = 0). Second, the appreciation is amplified

by the attribute value, hence the heavier attribute are more sensitive to appreciations.

Note that the appreciation is always between 0 and 1.

図 6: An illustration of the Rating model

Figure 6 shows an example of a file with attribute size As = 64 rating three nodes

with different space metrics S1 = 5, S2 = 10 and S3 = 0 respectively. Calculating the

appreciation give the values of 0.5, 0 and 1.0 respectively, which means that node 1

has 50% more free space the most loaded, while node 3 has 100% free space. After

multiplying the appreciation with the file attribute, the rate of each node is 32, 0 and

64 respectively. Hence, the chosen node for placement is node 3.

3.4.3 Advice Model

Now that the current file knows to which node it is assigned, it can advise its

neighbors via the advice model. Indeed, the goal of the advice model is to allow two

related files to be placed on the same node, especially when there are several nodes

with similar availability condition. The extent to which the advice can affect placement

decision depends on a priority, i.e., the weight of the requesting file (parent); on the

strength of its relation to the child, and on the advice factor which is a constant to

magnify furthermore the advice effect.

We denote the equation for the advice below:

Advice(i,j) = αW (fi)R(i, j) (9)

(Advice(i,j)) denotes the weight of the advice sent from the parent file i to the child

j. The actual advice variable has two parts: the id and the weight. The id is that of

the node to which the advice will lead, and the weight is the strenght of the advice.

The advice weight is added to the rate of the node with the same id, and that will

affect the placement decision. The more important the parent and/or the higher the

probability that it requires the child, the more it affects the selection process of the

child. However, if the child weight is heavy such that it dislikes the advised node, it

can counter the effect of the advice. The advice factor α is either an amplifier or a

de-amplifier of the effect of the advice.

図 7: An illustration of the advice model

An example of the advice mechanism is shown in Figure 7, in which a parent with

three children are to be placed on two nodes. The parent has a size attribute As=10

and the children have As values of 5, 9 and 3 respectively. The root is first placed on

the left storage node and then the children are popped using BFS onto the scheduling

queue. Next, the file with attribute As=9 is placed on the right node. Now, the left

and right nodes have a space metric of 10 and 9 respectively. Note that the right node

has only 10% free space than the left one. Now goes the turn for the file with As =

5, the rating phase gives the 0 and 0.5 respectively. However, this file has the highest

relation with the parent (0.6), and when the advice is calculated and added to the rate

of the left node, the latter becomes more attractive than the right and hence receives

the file. Note that if the file size of 10, it will resist the advice.

3.5 Placement Algorithm

The complete placement algorithm is shown in Listing 8 below. Note that the time

complexity is O(A ∗ N), as it is relevant to both the number of attributes A and the

number of nodes N , and that is the only loop present at the rating phase. The advice

calculation is straightforward.

Placement procedure

Place (file , advice)

//assigns a ’file ’ to a node

//using an ’advice ’ weight ,

//returns the id of the selected node

node = assign(file , advice

//build the next advice

advice2 .id = node. getId ;

advice2 .w = file. getWeight ;

//fetch edges related to ’file ’,

//sort by priority and push to job list

links = list file edges

sort(links)

for link in links

push link in jobs list

// recursive call for the neighbors of ’file ’

for job in jobs

Place (job , advice2)

Assignment procedure

Assign(file , advice)

//skip file if already assigned ,

//return the node assigned to it

if(file processed)

return file. getLocation();

// calculate node rating parameters

calculate As , Al

calculate Smax , Lmax

//weight each node based on above

for Ni in nodes N

N[i].w = rate(s) + rate(l)

//adjust the weight of the adviced node

//using advice weight and power factor

N[advice. id] += factor * advice.w;

//return the node with the best rating ,

//i.e., with the heaviest weigth

return max(N)

図 8: Pseudo-code for core processing elements

4 Implementation

A cluster simulator was implemented to simulate client requests, the master server’s

handling of requests, placement and the I/O nodes status report. Java was the adopted

programming language, for its elegant paradigm and extensive library which let the

programmer focus on the program logic. Figure ? shows the steps of the simulation. At

first, request graphs are generated using the Generator Utility, and saved as object files.

This phase simulates the Consumer Client reserving the request graph on the server.

Second, the Kernel program that simulates the master server, loads the graph and

initiates the Cluster object which simulates the cluster nodes. The Kernel traverses

the graph after reading parameters settings (e.g.: the placement algorithm), makes

placement decision and updates the Cluster metrics value at each file insertion into

the metadata database. After finishing placement, the master re-initiates the cluster

metrics. Finally, a Client Simulator program reads the request graph from the object

file and launches client threads, each thread issues a request to the master, the master

updates the node metrics

4.1 Request Graph Generation

4.1.1 Anatomy of a Request Graph

The RFileSet represents the Request Graph. A graph can be implemented using

either an adjacency matrix or an adjacency list. The adjacency matrix is a 2D array

of size N ∗ N where N is the graph size or the number of nodes. The value at [i][j]

represents the weight of the edge between node i and node j and vice versa; if the value

is zero or null it means there is no edge. The adjacency list is simply a linked list of

the edges to which the node is connected.

The adjacency matrix is more storage efficient for densely connected graph while the

adjacency list is more efficient for quickly retrieving the edges of a given file. For

this reason the adjacency list approach is chosen. Moreover, large size graphs are

considered which encumbers processing for the adjacency matrix.

As shown in Figure 9, the RFileSet objects represents the request graph. It has a

single node object which is the root node, and maintains internal list data structures

for traversal. It supports operations for different traversal methods. The RFile is a

graph vertex object that represents the request file, it has a RMeta object that holds file

attributes, and a list of Relation objects, which is the adjacency list of edges connected

to it. The RMeta is a hashmap object that stores pairs of attribute name and value.

The Relation object stores a references to the related file, t has two dimensions: type

and value, where the ’type’ is the nature of the relationships, for now; we consider the

simple ’request on request’ but others can be suported such as ’delete on request’; the

’value’ is the probability that the relationships will actually occur.

4.1.2 Generator Utility

A graph generator (RFileSetUtils.java) can randomly generate different graph shapes

(RFileSet.java) using parameters as described below:

Figure 10 shows a pseudo code of the graph generation processes. The generate

function takes as input a shape variable that contains the dimension limits of the

graphs, and a rand variable that contains random seed generators for the attributes and

relations. First, the root file of the graph is built and passed to the recursiveGenerator

function that generates children of the input parent file using the random generators,

and recursively repeats the process for the children until one of the counters reaches

the shape limit, and returns to the generate function, which completes the graph with

additional The graph generator is a recursive function that starts with the root of the

図 9: Request Graph DataStructure

generate a single graph

generate (shape , rand){

init counters : size , depth , width , edges ;

RFile root = build (rand);

recursiveGenerator(root , rand , depth +1);

graph = new Graph (). setRoot = root;

while(counter < size)

complete (graph)

return graph

}

recursiveGenerator(parent , rand , depth){

if(size > maxSize

or width > maxWidth

or depth > maxHeight) return

increment size

list children = generateNeighbors(rand , edges)

for(link in children) do:

make_link (parent , link , rand)

recursiveGenerator(link , shape , rand , depth +1)

}

generate graph files

buildGraphs(){

shapes = read params { shape1 , shape2 , shape3}

rand = init randomizers(MetaGen , LinkGen)

foreach shape in shapes

graph = generate (shape , rand);

write2File(graph , filename (graph + shape));

}

図 10: Graph Generation Pseudo-Code

表 3: Generator Parameters

Parameter Description

maxSize Maximum number of files in the graph

maxDepth Maximum depth of the graph

maxWidth Maximum number of edges per level of depth

maxEdges Maximum number of edges allowed per node.

MetaGen Random seed for generating attributes weights

LinkGen Random seed for generating relation weightse

graph and keeps generating children until one of the dimension parameters (size, width,

depth) is reached. If the graph size is smaller than the Size parameter, a completing

function adds files until it reaches the maximum size.

The buildGraphs function generates many graphs with different shapes parameters

initiated as a list of shapes (i.e.: dimension) and runs the single graph generator for

each shape, the generate graph is saved to a file with the corresponding shape values

as filename.

4.2 Cluster Simulator

The Master process is at the core of the simulator program because the focus is

on file placement. The metadata table is stored on a MySQL Database, it shown in

Table ??. It is a simple metadata table used by the cluster simulator to store request

graph files, including their attributes and relations; and to assign locations to the files

after placement decisions are performed. A thread pool allows for multiple instances

of client requests to arrive and safely update the table.

The Table 4 below This metadata table is queried when receiving request from the

consumer client and

The Slaves process simulates the cluster nodes, it maintains the node workload and

space status stored on a table as shown in Table 5. It is also a multithreaded process

so that the same node can updates its metric concurrently in the case of multiple

requests arriving at the same time.

表 4: MetaData File Table

Column Description

ID Int : A numerical value identifying the file

File String : A hash of the file name

Attributes String : A code that holds attribute

e.g.: 1K:H means As=1 kilobyte, Al=High frequency

Relations String : A code that holds relations

e.g.: RonR@18873:0.5 means 50% chance to request 18873

Location String : A code that contains the ID(s) of node(s) storing the file

Requests Int : A request counter for this file

表 5: Slaves Table

Column Description

ID Int : A numerical value identifying the node

Hostname String: identifier usable for network access

Space long : The space metric

Load long : The load metric

SizeMap String: A String code that holds the size distribution

by counting the number of files for a given node

Requests Int : A request counter for this node

5 Evaluation

5.1 Strategy

The simulation strategy is divided into several steps described as follows:

1. Graph Generation: The graphGenerator program from Section 4 is run with a

set of parameters as described in Table 6. Although several graph and cluster sizes

were tested, the results shown in the following section mainly concerned different

randomly generates graphs of a size of 1000, to be placed on a cluster size of 10.

All of the graph attributes are randomly generated and the relations are randomly

generated then adjusted with respect to the frequency attribute. The generated

graphs are saved into a file, so that the same random graph is used by different

programs at once. This is to simulate the early reservation step.

表 6: Experiment Parameters

Parameter Values

Cluster Nodes mainly 10, also 5, 15, 25, 50

Graph Size 5 sets of 1000, also 10, 100 and 10000

Graph Density 2
√

GraphSize

Attribute random 1K, 64K, 256K, 512K,

1M, 16M, 32M, 64M, 128M, 256M

Relation Weight random 0.01 · · · 0.99

Advice factor 0.0001, 0.001, 0.01, 0.1, 1, 10, 100

2. Graph Placement: The graph file is loaded onto the master simulator that ini-

tiates the cluster nodes and their metrics, then performs the placement in the

metadata database. In addition to the proposed placement algorithm, called

BLuRGER subsequently, three other algorithms are investigated: 1: RoundRobin

with a Breadth First traversal of the graph, 2: Space1st which sorts the graph

files by space attribute and chooses the best node with the smallest space metric;

and 3: Load1st which sorts the graph files by weight and choses the best node

with the smallest load metric.

3. Client Request: this step is executed after the previous steps are finished in

order to simulate the concept of early reservation. The simulator launches 50 client

threads, each of which sends a number of requests that is relevant to the shape

of the graph. At each request the master updates the Load and Space metrics.

The total number of requests for each file is dependent on the frequency attribute

of the file as well as the relation to its neighbors with their respective attributes.

Equation 10 and Fig. 5 illustrate this concept: Ali requests are generated for the

parent, then AljR(i, j) requests are generated for child j and AlkR(i, k) requests

are generated for child k. The general formula is described in :

NRi = Ali
n∑

k=1

AlkR(i, k) (10)

Using this scheme, the workload on the cluster is a function of the request graph

structure.

4. Measurement: Finally, measurements were obtained as follow: Space distribu-

tion: For each node, the sizes of files stored in that node are summed and divided

by the sum of the sizes of all files in the cluster to obtain a percentage from total.

For a cluster of N nodes, the closer the percentage is to 1/N the better the space

balance. Also calculate the average standard deviation for different graphs and

for different advice factors.

Load distribution: Similar to the above, but the summation concern each file’s

size multiplied by the request count.

Linking Index: count all the files that are related and that were placed together

on the same node, sum the results for all nodes to obtain a percentage from the

total graph.

5.2 Results

The results are comparing the following algorithms : RoundRobin, Space1st, Load1st

and BLuRGER. RounRobin is a done on the files of the graph after a Breadth First

Search (BFS) traversal. Space1st is a weighted placement that searches for the node

with minimum space metric, after traversing the graph and sorting the files by the

space attributed. Similarly, Load1st sorts the files by the weight attribute and chooses

the node with the smallest Load metric. Finally, BLuRGER is the proposed method,

where unless mentionned, the used advice factor α = 0.1. Each algorithm is run after

initiating the cluster nodes.

図 11: Space distribution

Figure 11 shows the distribution of used space on each node as a fraction of sum of

sizes of file on the whole cluster. Since there are 10 nodes a perfectly balanced cluster

will contain 10 % of the total allocated sizes. space on each node. Clearly, Space1st

satisfies this requirement, and BLuRGER is performing very close to it. Obviously,

RoundRobin is rather noisy but suprisingly ranks better than Load1st that tries to fit

files with respect to load. Load1st is the least balanced and thus on average performs

1.59 %. behind Space1st, while RoundRobin is 1.02 %. behind. BLuRGER is very

close with only 0.17 %. difference.

Figure 12 shows the distribution of load on the cluster nodes as a fraction of the

total load units assigned on the whole cluster. Now Space1st is no more balanced

and performs equally as bad as Round Robin with respectively 1.57 %. and 2.00 %

difference from Load1st, which has a 0.25 %. variance. This time BLuRGER is not as

close as in the space dimension but still outperforms the space-weighted and roundrobin

approaches with less than one percent noise at 0.88 %. while it is interesting to note

図 12: Load distribution

that the proposed method up to now combines both the advantages of space weighted

and load weighted placement decisions. .

Figures 13 and 14 show the result of running the placement algorithms on five

different randomly generated data sets, for the space and load metrics respectively.

The goal is to see the stability of the algorithms response to different request graph

shapes. The horizontal axis represents each separate dataset while the vertical axis

corresponds to the standard deviation of the metric from the values for each node’s

metric. For the stability regarding the space metric, Figure 13....std. dev. for the total

datasets...same for load

Figure 15 concerns the proposed method only. It shows the effect of the advice factor

(x-axis) on the standard deviation for both the space and load metrics. The lower the

standard deviation the better is the server balanced with respect to the metric. Here

it appears that the balance is maintained lower than 1% for values of α lower than

1, which means that priority is given to the rating model, in which the algorithm

tries to satisfy the space/load requirements first, before trying to satisfy the linking

requirement. When the value of α is equal to 1 the algorithm lets the rating and advice

図 13: Standard deviation of Space over different datasets

models compete between themselves, in which case the files with heavy space/load

requirements resist the advice, unless they are strongly bonded with the parent file

and if the parent is indeed heavier. In such situation, the advising attracts neighbors

to nodes with are less well rated with respect to their own space/load tentations.

This situation is worsened as the advice factor α gets into higher orders of magnitude

giving the power to small parent files to attract heavy children into nodes which are

less and less optimal. Hence the magnitude of the cluster imbalance that lineraly grows

with the magnitude of the advice factor, hinting that the advice should be used with

moderation.

However, the advice factor does make a difference compared to RR, Load1st and

Space1st, which is the linking index being shown in Figure 16. The linking index

being the percent of related file graphs that are placed together on the same node

of the cluster. The higher the linking index the less partitioned is the graph, which

means less request overhead for both clients and servers. Step1 linking index considers

the direct neighbors, step2 corresponds to files linked with a neighbor in addition to a

neighbor of the neighbor, and step3 requires that three neighbors away be all together

on the same node. Clearly, one of the strength of the proposed method can be seen in

this graph, where BLuRGER radically outperforms with more than 50% of the graph

shape maintained while the others are just above 10%. Moreover, for the 2-steps the

difference is of one order of magnitude; while for 3-steps all other algorithms are zeroed

(besides Load1st with less than 1%) while BLuRGER still maintains a good 5%.

Figure 17 shows the evolution of the 1-step, 2-steps and 3-steps linking indexes

with respect to the advice factor. They all grow linearly as the advice factor grows

exponentially, which is an expected behavior.

Figure 18 shows the processing overhead associated with the an increasing graph

volume. BLuRGER only slows lineraly up to 2.5% from RoundRobin and hence the

delay is not a handicap especially for the case of early reservation. The processing

cost overhead is actually not due to the graph size, since our algorithm traverses the

graph once, however, the rating method which loops over the attributes and the cluster

nodes is like to exponentially increase with those parameters. This is left to further

investigation.

図 14: Standard deviation of Load over different datasets

図 15: Effect of advice factor on the Space and Load distributions

図 16: Linking index

図 17: Effect of advice factor on the linking index

図 18: Processing overhead

6 Conclusion

6.1 Self Assessment

In this paper we have proposed a novel approach to file placement and load balancing

for both clients and servers in a cluster-based file system. The approach assumes

that the client knows in advance the attributes and relations of a set of files, which

correspond to a request pattern. The set of connected file request was modelled as

a directed acyclic graph, with file requests as vertices and request relations as edges.

The weight of the vertices is the sum of the request attributes and the weight of the

edges is the probability value. The goal of the proposed approach for file placement

was two fold: first, minimize load imbalance on the cluster nodes by assigning the files

on the best possible node; second, minimize the request overhead caused by graph

partitioning so that related requests files are placed on the same node. A custom

computation model was proposed to satisfy each goal, those were the Rating model

and the Advice model, respectively; also, heuristics for measuring the effectiveness

of each model were defined: Space and Load metrics for cluster balance and Linking

index for graph partitioning. The rating model tries to satisfy the cluster balance goal

by rating each request file’s attribute against the cluster node metric, and selecting

the node with the highest rate. The node chosen by the rating computation is fed into

the the advice computation, so that the related requests parent can attract its children

to the same node. This was accomplished by combining the weight of the parent with

the weight of the relation in order to adjust the rate for the children.

Experiments were conducted to examine the behavior of the proposed method,

in comparison to RoundRobin, Loast-weighted and Space-weighted placement algo-

rithms. The results have shown that for cluster space balance, the proposed method

performed similarly to the space-weighted, and much better than the other two. Also

for cluster load balance, it performed near the load-weighted and still better than the

other two. Hence, the proposed method combined the advantages of both weighted

algorithms and outperformed RoundRobin. This is due to the granularity of the rating

method. As for the graph partitioning, the proposed method succeeded in maintaining

up to 50% of the total 1st degree relations, which was clearly far better than all the

other algorithms. Also, graph shape was maintained for two and three degree away

relations for up to 10% and 5% respectively, while the other methods were near zero.

These figures could be improved to up to 60% for first degrees without affecting much

cluster imbalance, thanks to the amplification of the advice factor. However, an advice

factor higher than 1 brought undesired noise.

To summarize, the proposed method could combine two conflicting requirements

while performing as good as, if not better, than competing classical algorithms. The

result are satisfying for a preliminary study, however not enough since the simulation

was performed on a static system.

6.2 Future Directions

As for future work it can be divided into three parts:

1. Dynamics support : Clearly, the weakest point of the current method and

associated simulation is the lack of support for dynamic behavior, which is actually

closer to real world situation. First, load metrics should be measured dynamically

as the cluster node’s state is changing. This implies that it might be necessary

to take into consideration further parameters during the placement even in early

reservation mode; for instance, statistical measurement and traces of cluster nodes’

workload could be included in the rating process.

2. Simulator Upgrade: The above step would certainly require that the cluster

simulator as well as the clients simulator be improved to be as close as possible to

a real world cluster file system. One way to verify it is to be able to reproduce the

same behavior obseved on a real environment via the file access traces. Moreover,

support for operations and consistency semantics, scalability and availability via

replication..etc are all required.

3. Extension to the model : There is interesting prospects in investigating how

far can the proposed method combine conflicting resource requirements for both

attributes and relations on one side and cluster metrics on the other side. The

request graph model is extensible with more attributes such as Expiry, Growth,

Security..etc, as well as more request relations such as : read-on-write, delete-on-

read ..etc. Moreover, extension of the cluster model is possible with addition of

complex metrics.

4. Graph Profiles : Finally, after having a pseudo-real cluster file system environ-

ment and an extensible request graph model, it would be interesting to test the

behavior of the system on real datasets, i.e. request graph shapes, that we shall

call graph profiles. There are typical graph profiles under consideration. One pro-

file is the Web-Media profile corresponds to a webgraph for multimedia purposes,

it has properties such as heavy weight files and scarce requestion relations. An-

other profile is the Web-blog which corresponds to a webgraph for text and search

purposes, here the files are smaller but frequencies are higher and especially rela-

tions are complex and numerous. Finally, a FS-Backup profile corresponds to the

backup/restore scenario of a user file system, here the graph is tree-shaped and

both attributes and relations include a wide range of values.

There is certain optimiism regarding the achieved and prospective goals, that is

the opening of a new approach to client / server interaction, practically a middle-

ware capable of satisfying complex and conflicting requirements from the client while

maintaining acceptable load on the server.

参考文献

[1] : Practical File System Design with the Be File System, Morgan Kaufmann Pub-

lishers;, USA, 1st edition (1999).

[2] : Posix.FileSys structure, The Standard ML Basis Library. http://www.standardml.org/Basis/posix-

file-sys.html.

[3] : Cluster Computing White Paper, CoRR, Vol. cs.DC/0004014 (2000).

[4] Cluster-based scalable network services, New York, NY, USA, ACM, pp. 78–91

(1997).

[5] A scalable and highly available web server, Washington, DC, USA, IEEE Com-

puter Society, p. 85 (1996).

[6] Cluster-based file replication in large-scale distributed systems, New York, NY,

USA, ACM, pp. 91–102 (1992).

[7] Serverless network file systems, ACM Trans. Comput. Syst., Vol. 14, No. 1, pp.

41–79 (1996).

[8] Amazon S3 for science grids: a viable solution?, New York, NY, USA, ACM, pp.

55–64 (2008).

[9] Dynamo: amazon’s highly available key-value store, SIGOPS Oper. Syst. Rev.,

Vol. 41, No. 6, pp. 205–220 (2007).

[10] The Google file system, New York, NY, USA, ACM, pp. 29–43 (2003).

[11] Scalability in the XFS file system, Berkeley, CA, USA, USENIX Association, pp.

1–1 (1996).

[12] : Distributed File System, Distributed File System Technology Center.

http://www.microsoft.com/windowsserver2003/technologies/storage/dfs/default.mspx.

[13] Scalable performance of the Panasas parallel file system, Berkeley, CA, USA,

USENIX Association, pp. 1–17 (2008).

[14] : The evolution of Coda, ACM Trans. Comput. Syst., Vol. 20, No. 2, pp. 85–124

(2002).

[15] Ceph: a scalable, high-performance distributed file system, Berkeley, CA, USA,

USENIX Association, pp. 307–320 (2006).

[16] A taxonomy of scheduling in general-purpose distributed computing systems,

IEEE Trans. Softw. Eng., Vol. 14, No. 2, pp. 141–154 (1988).

[17] : Data placement in widely distributed systems, Madison, WI, USA (2005).

Supervisor-Livny,, Miron.

[18] Adaptive Load Sharing for Clustered Digital Library Servers, Washington, DC,

USA, IEEE Computer Society, p. 235 (1998).

[19] : On the analysis of randomized load balancing schemes, New York, NY, USA,

ACM, pp. 292–301 (1997).

[20] Load balancing a cluster of web servers using distributed packet rewriting,

Boston, MA, USA (1999).

[21] Geographic Load Balancing for Scalable Distributed Web Systems, Washington,

DC, USA, IEEE Computer Society, p. 20 (2000).

[22] : Interposed request routing for scalable network storage, ACM Trans. Comput.

Syst., Vol. 20, No. 1, pp. 25–48 (2002).

[23] Efficient striping techniques for multimedia file servers, Austin, TX, USA (1998).

[24] Dynamic function placement for data-intensive cluster computing, Berkeley, CA,

USA, USENIX Association, pp. 25–25 (2000).

[25] Static scheduling algorithms for allocating directed task graphs to multiproces-

sors, ACM Comput. Surv., Vol. 31, No. 4, pp. 406–471 (1999).

[26] : Benchmarking the Task Graph Scheduling Algorithms, Washington, DC, USA,

IEEE Computer Society, p. 531 (1998).

[27] A five-year study of file-system metadata, Trans. Storage, Vol. 3, No. 3, p. 9

(2007).

