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ABSTRACT
Effective methods to reduce number of message cycles of
adopt algorithm which is a complete algorithm for dis-
tributed constraint optimization problems are proposed.
The Adopt algorithm can perform branch and bound search
asynchronously. However, it has overhead in backtracking
and searches same partial solution repeatedly. To reduce
overhead of backtracking, lower and upper bound of cost
of partial solution are considered and some messages are
sent to upper nodes by shortcut. Leaning of the lower and
upper bound is used to reduce extra search. The results
show the efficiency of the proposed methods.
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1 Introduction

Distributed constraint optimization problem (DCOP) [5][6]
is a constraint optimization problem (COP) [1][2] which is
applied to distributed search. DCOP is an important area
of researches of multi-agent system because it formalizes
optimization problem which cannot be formalized by dis-
tributed constraint satisfaction problem (DCSP) [3].

Branch and bound search methods for over-
constrained CSPs are presented in [2]. However, most ex-
isting methods for DCOP are based on DCSP algorithm or
approximated algorithm [4][5]. Adopt [7] is a complete
algorithm for DCOP based on branch and bound search.
In this algorithm, nodes (agents) are priorized in depth first
search tree for cost computation. The nodes perform search
asynchronously.

However, adopt algorithm has overhead in backtrack-
ing and searches same partial solution repeatedly due to
asynchronisity and memory restriction. In this paper, meth-
ods to reduce these overheads are presented. To reduce
overhead of backtracking, lower and upper bound of cost
of partial solution are considered and some messages are
sent to upper nodes by shortcut. Leaning of the lower and
upper bound is used to reduce extra search.

2 DCOP and Adopt algorithm

First, we illustrate DCOP and Adopt algorithm [7] in brief.
In this paper, some notation and rules are modified. The
DCOP as following is considered. A node (agent)i has
a variablexi. xi has a value ofdi ∈ Di. Variables
are related by binary constraint. Letxj denote a vari-
able of nodej which is related toxi. Cost of the value
pair ((xi, di), (xj , dj)) is evaluated byfij(di, dj) which
is the cost function of the constraint. Each node knows
the constraints and cost functions which are related to their
own variable. Each node selects the value of its own vari-
able. In the following, nodei and variablexi can be used
interchangeably. Cost of a solution is a conjunction of
fij(di, dj) for all constraints. Optimal solution has the
minimum cost. Each node has message communication
links to another nodes. Order of messages in a link is not
changed. However, order of messages between links is not
kept.

In adopt algorithm, it is assumed that nodes are prior-
ized in a depth first search (DFS) tree of a constraint net-
work. There are no constraints between subtrees of DFS
tree. Therefore each subtree has parallelism. A nodei
knowsparenti, set of childrenchildreni and set of up-
per / lower neighborhoods which are related by constraints
upperNeighborsi / lowerNeighborsi .

Execution of the algorithm is as following. (1) Each
node evaluates the cost of the current solution and the cost
allocation. The node selects the value of its variable ac-
cording to the evaluation. The value is notified to the lower
neighborhoods which are related by constraints (VALUE
message). (2) Each node notifies the cost of the current
solution to its parent (COST message). (3) Each node de-
cides the cost allocation between itself and its children. The
cost allocation is notified to children (THRESHOLD mes-
sage). After repeating the above process, the lower and
upper bound of evaluated cost become equal in the root
node. The root node then selects the optimal value of its
variable and notifies termination to children (TERMINATE
message). The children search the optimal value of its vari-
ables and terminate. Finally, all nodes terminate and its al-
located values are the optimal solution. The components of
the adopt algorithm are shown in the following subsection.



2.1 Variables

Nodei has following variables.

• di: value of variablexi

• thresholdi: backtracking threshold

• currentContexti: solution of upper nodes

• contexti(d, x): solution of upper nodes of a child

• lbi(d, x),ubi(d, x) : upper and lower bound of cost of
solution of a child

• ti(d, x): backtracking threshold for a child

di is changed according to cost evaluation and is
notified to lower neighborhoods by VALUE messages.
thresholdi is the cost which is allocated to subtree by
its parent. It is used to determine whether to change the
value ofdi. currentContexti is cache of solution of up-
per nodes. When VALUE or COST messages are received,
currentContexti is updated. contexti(d, x), lbi(d, x)
andubi(d, x) are cache of cost ford ∈ Di, x ∈ childreni.
They are updated when COST message is received.ti(d, x)
is set by nodei and it is notified to children by THRESH-
OLD messages. Initial values of the variables are follow-
ing: di ∈ Di, thresholdi = 0, currentContexti = {},
contexti(d, x) = {}, lbi(d, x) = 0, ubi(d, x) = ∞,
ti(d, x) = 0.

2.2 Definition of Costs

For d ∈ Di, local costδi(d) of nodei is defined as the
sum of cost of constraints for upper neighborhoods. For
d ∈ Di, lower boundLBi(d) and upper boundUBi(d)
of cost of the subtree rooted ati are defined as the sum of
local cost and lower or upper bound for all children. Lower
boundLBi and upper boundUBi of the subtree are the
minimum value ofLBi(d) andUBi(d) for d ∈ Di.

δi(d) =
∑

(xj,dj)∈currentContexti,

xj∈upperNeighborsi

fi,j(d, dj)

LBi(d) = δi(d) +
∑

x∈childreni

lb(d, x)

UBi(d) = δi(d) +
∑

x∈childreni

ub(d, x)

LBi = mind∈DiLBi(d)
UBi = mind∈DiUBi(d)

2.3 Conditions for variables

Nodei maintains the following conditions.
[condition for contexti(d, x)]

∀d ∈ D, x ∈ children,
contexti(d, x) and currentContexti are compatible

If contexti(d, x) and currentContexti are incom-
patible, lbi(d, x), ubi(d, x) and ti(d, x) which are
related to contexti(d, x) are also incompatible with
currentContexti. Therefore contexti(d, x) and
currentContexti must be compatible. It means that
the values of same variables in both contexts must be
equal. If they are incompatible,contexti(d, x), lbi(d, x),
ubi(d, x) and ti(d, x) are re-initialized to their initial
values.
[condition for ti(d, x) (ChildThresholdInvariant)]

∀d ∈ D, x ∈ childreni,
lbi(d, x) ≤ ti(d, x) ≤ ubi(d, x)

Backtracking threshold for a child must not exceed the
lower and upper bound of cost of the child.ti(d, x) is lim-
ited by the lower or upper bound.
[condition for thresholdi (ThresholdInvariant)]

LBi ≤ thresholdi ≤ UBi

Backtracking threshold for nodei must not exceed the
lower and upper bound of cost of the node.thresholdi

is limited by the lower or upper bound.
[condition for di]

{
UBi(di) = UBi if thresholdi = UBi

LBi(di) ≤ thresholdi otherwise

Lower bound of cost for value of variable must not exceed
backtracking threshold. If it exceeds threshold, valuedi is
changed asLBi(di) = LBi. This backtracking strategy
is considered as an optimistic search. Especially, if back-
tracking threshold and upper bound are equal, the value for
the upper bound must be selected. This condition is needed
to select optimal solution.
[condition for ti(d, x) (AllocationInvariant)]

thresholdi = δi(di) +
∑

x∈childreni

ti(di, x)

Backtracking threshold is a cost which is allocated to sub-
tree rooted at the node. Therefore it must be equal to sum
of local cost and backtracking threshold for all children.
If they are different,ti(d, x) are adjusted. [condition for
ti(d, x) (ChildThresholdInvariant)] must also be kept.

2.4 Message sending

Nodei sends the following messages to the other nodes1 .
[send (VALUE,(xi, di))]

condition to send:di has updated
destination:x ∈ lowerNeighborsi

[send (COST,xi,currentContexti,LBi,UBi)]

1In [7], Conditions for message sending is not described strictly. We
use a set of conditions which can perform the algorithm correctly.



condition to send:
(VALUE messages are received from∀x∈
upperNeighborsi) ∧ (di, currentContexti,
thresholdi or the costs of children are updated)
∧ (TERMINATE message is not received)
destination:parenti

[send (THRESHOLD,currentContexti,ti(di, x))]
condition to send:
di, currentContexti or the costs of children are
updated
destination:x ∈ childreni

[send (TERMINATE, currentContexti ∪ (xi, di))]
condition to send:
condition for termination is true (shown later)
destination:x ∈ childreni

2.5 Message receiving

Node i processes the followings, when messages are re-
ceived.
[when (VALUE, (xk, dk)) is received]

if TERMINATE is not receivedthen
add(xk, dk) to currentContexti (or replace).

endif
[when (COST,xk,contextk,lbk,ubk) is received]

d ← d that(xi, d) ∈ contextk
remove(xi, d) from contextk.
if TERMINATE is not receivedthen
∀(xj , dj) ∈ contextk,
xj /∈ upperNeighborsi,
add(xj , dj) to currentContexti
(or replace).

endif
maintain [condition forcontexti(d, x)].
if contextk andcurrentContexti

are compatiblethen 2 (2.5)
∀(xj , dj) ∈ contextk,

add(xj , dj) to contexti(d, xk) (or replace).
if lbk > lbi(d, xk) then
lbi(d, xk) ← lbk endif

if ubk < ubi(d, xk) then
ubi(d, xk) ← ubk endif

endif
[when (THRESHOLD,contextk,tk) is received]

if contextk andcurrentContexti
are compatiblethen thresholdi ← tk endif

[when (TERMINATE, contextk) is received]
currentContexti ← contextk
record that TERMINATE is received.

2.6 Optimal cost and termination of search
In root nodei, LBi = thresholdi = UBi will eventu-
ally occur. Theni fixes its value to optimal solution and
terminates. When parent node of nodej is terminated and
thresholdj = UBj occures,j fixes its value to optimal
solution and terminates.
[Termination detection]

2In this paper, following part of this procedure is modified. By this
modification, even if a COST message which has compatiblecontextk,
lbk < lbi(d, xk) andubi(d, xk) < ubk is received, the monotonisity of
cost is guaranteed.

if thresholdi = UBi∧
(i is root node∨ TERMINATE is received)
then
(UBi(di) = UBi from [condition fordi])
record that condition for termination is true.

endif

2.7 Total flow of processing

The order of processings for above conditions and mes-
sages is not unique. In our implementation, each node
repeats the processes of receiving messages, maintaining
conditions and sending messages.

3 partial solution for upper/lower bound and
shortcut of message sending

In above algorithm, nodes perfom backtracking asyn-
chronously. However this simple backtracking has the
same redundancy as that of ordinary backtracking algo-
rithm. In this section, we present a method to reduce the
overhead of backtracking. Partial solutions for upper/lower
bound are derived and COST messages are sent by short-
cut. We assume that (1) each node has knowledge of path
form the node to root node, (2) each node has arbitrary
links which do not follow constraint edges, and (3) mes-
sages sent to terminated nodes are ignored.

3.1 partial solution for upper/lower bound
In adopt algorithm, nodei hascontexti(d, x) which is a
(parital) solution of upper nodes of a child. This solu-
tion proves the values oflbi(d, x) and ubi(d, x). How-
ever, parital solution needed to prove lower bound may not
contain all allocations of values of upper nodes. There-
fore contexti(d, x) is separated intocontextlbi (d, x) and
contextub

i (d, x) which are least solutions derived to prove
lbi(d, x) andubi(d, x). This concept is similar to resolvant-
based learning of DCSP [8]. If the partial solution for lower
bound does not contain value of parent, cost notification
is sent by shortcut to reduce redundancy of backtracking.
This is similar to backjumping in COP [2].

3.2 Derivation of partial solution

ForX ′
d ⊆ upperNeighborsi andX ′′

d ⊆ childreni,if

∀d ∈ Di,

LBi ≤
∑

xj∈X′
d

,(xj,dj)∈

currentContexti

fi,j(d, dj) +
∑

x∈X′′
d

lbi(d, x)

then partial solutioncontextlbi (d, x) which proves lower
bound is as following.

⋃
d∈Di

({(xj , dj) ∈ currentContexti|xj ∈ X ′
d}

∪
⋃

x∈X′′
d

contextlbi (x, d))



To select a (X ′
d,X ′′

d ) pair, certain evaluations such as,
(1) size of sets is small or (2) only upper variables are con-
tained, should be considered. In this paper, we choose the
latter. For eachd ∈ Di, a (X ′

d,X ′′
d ) pair whose lowest vari-

able is higher than that in other pairs is selected.
Partial solutioncontextub

i (d, x) which proves upper
bound depends on all constraints related to the subtree
rooted at nodei.

{(xj , dj) ∈ currentContexti|
xj ∈ upperNeighborsi}∪⋃
d∈Di,x∈childreni

contextub
i (x, d)

Thereforecontextub
i (d, x) is almost equal tocurrent-

Contexti if, delay of message and resetting of cache of
the childx, are not considered.

3.3 Modification of COST message

Format and destination of the COST message is modified
to send information of the separate partial solutions for up-
per and lower bound. COST message sent to the parent
includes partial solution for upper and lower bound.

(COST,xi,currentContexti,
contextlbi ,contextub

i ,LBi,UBi)

If contextlbi does not contain the variable of the parent
node, additional COST message for lower bound is sent
by shortcut. However, ifLBi = 0, it is clearly unnecessary
to send. The destination nodej has lowest variablexj of
contextlbi . The variablexk of the message is variable of
a node, which is a child ofj and an ancestor ofi. UBi

is not proven by shortcut message, therefore default upper
bound∞ and solution{} are used. The COST message is
as follows.

(COST,xk,contextlbi ,
contextlbi ,{},LBi,∞)

In message receiving [when received (COST,xk,
contextk, lbk, ubk)], the part from (2.5) is modified to
record partial solution for upper and lower bound sepa-
rately. The modified part for lower bound is as follows.

if contextk andcurrentContexti is compatible
then
if contextlbk contains(xi, d

′) then
d′ ← d′ that(xi, d

′) ∈ contextlbk
remove(xi, d

′) from contextlbk .
endif
for d = d′ if contextlbk contained(xi, d

′),
otherwise∀d ∈ Di

if lbk > lbi(d, xk) or (lbk = lbi(d, xk)
and |contextlbk | < |contextlbi (d, xk)|)
then
lbi(d, xk) ← lbk

contextlbi (d, xk) ← contextlbk
endif

endif

Similarly, the part for upper bound is modified such that
ubi(x, d) decreases monotonously.

[condition for contexti(d, x)] is also separated for
upper and lower bound. ti(d, x) is pushed up by
lbi(d, x). Thereforeti(d, x) is reset withlbi(d, x) when
contextlbi (d, x) is incompatible.

4 Learning of upper/lower bound

One of the merits of the adopt algorithm is its polyno-
mial memory. Each nodei records a set ofcontexti(d, x),
lbi(d, x) and ubi(d, x). If they are incompatible with
currentContexti, they are reset to their initial value.
However, the reset causes an increase in search cycle. If
enough memory is available, the partial solutions should
be recorded in order to reduce the number of cycles. In this
section, learning of partial solutions is presented. This is
similar to Nogood learning of CSP/DCSP [9][10].

4.1 Adding of cache

If all contextlbi (d, x) or contextub
i (d, x) and correspond-

ing lbi(d, x) or ubi(d, x) (denoted bycontext
lb/ub
i (d, x)

and lb/ubi(d, x) in the following) are recorded, no re-
set of cache occurs. However, that is impossible if the
problem size is not small, because it requires exponential
memory. Therefore, we use a set of buffers which are
managed by LRU. Buffers which have a finite length are
added for eachcontext

lb/ub
i (d, x) and first element of the

buffer is used ascontext
lb/ub
i (d, x). If the first element

andcurrentContexti is incompatible, the buffer is main-
tained. If compatible element is in the buffer, the element is
moved to front. If it is not found, a new element is inserted
at front. If length of the buffer is over the limitation, the
last element is removed. The correspondinglb/ubi(d, x)
are also managed.

4.2 Integration of partial solutions

If only one context
lb/ub
i (d, x) (andlb/ubi(d, x)) compat-

ible with currentContexti is recorded in the buffer, the
context is modified by cost notification and previous com-
patible context is forgotten. It is reasonable to record com-
patible contexts which partially overlap in solution space.
Therefore, those partial solutions are recorded in the buffer.
If a partial solution is included by another, solutions are in-
tegrated to reduce memory. If

lb ≥ lb′ ∧ contextlb ⊆ context′lb

ub ≤ ub′ ∧ contextub ⊆ context′ub

thencontext′lb/ub andlb′/ub′ are replaced bycontextlb/ub

andlb/ub. In other case, both of them are recorded.
When COST messages are received, partial solutions

are added or replaced according to above conditions. In
cost evaluation, compatiblecontext′lb/ub and correspond-
ing lb′/ub′ which have most narrow boundary are selected
as first element of caches.
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Figure 1. Average number of cycles to find the optimal
solution (weight of constraint=1,d=2)
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Figure 2. Average number of cycles to find the optimal
solution (weight of constraint=1,d=3)

5 Evaluation
The results of simulations are shown above. We use graph
coloring problem with 3 colors which is experimented in
[7]. For n number of nodes and parameterd = {2, 3},
the number of constraint is determined asn · d. Weight of
constraints are1 or {1, · · · , 10}. Normal adopt algorithm
(adopt), adopt using shortcut message (shortcut), short-
cut using additional context caches to learn partial solu-
tions (sc+cache), and sc+cache using context integration
(sc+cache+integrate) are evaluated. Length of caches is
100 for each(d, x).

First, we simulate distributed system. The system per-
forms cycles of message exchange and processing of nodes.
The node performs message receiving, maintaining of con-
ditions and message sending in each cycle. Results of 25
problems are averaged. Average number of cycles to find
optimal solution are shown in Fig. 1, 2, 3, 4. In the case
of d = 2, the effect of learning partial solutions is less than
the effect of shortcut message. It can be considered that
the algorithm does not search same solution repeatedly in
less constrained problem. In the case ofd = 3, the number
of cycles are reduced by learning partial solutions. Aver-
age number of messages per cycle is shown in Fig. 5. In
methods using shortcut messages, the number of messages
increases. However, the increment of total messages is not
large.

To evaluate the performance of the algorithm in asyn-
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Figure 3. Average number of cycles to find the optimal
solution (weight of constraint={1, · · · , 10},d=2)
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Figure 4. Average number of cycles to find the optimal
solution (weight of constraint={1, · · · , 10},d=3)

chronous distributed environment, we use the MPI environ-
ment. For this experiment, the program which is used in
above simulation is modified to send and receive message
using MPI. The performance tuning of the program and
the timing of receiving the message was not considered.
In this evaluation, weight of constraints are{1, · · · , 10}
and d = 3. A typical problem was picked for vari-
ous number of nodes respectively. Results of 10 trials
are averaged. The environment in which the experiment
was performed is as follows: Intel Xeon 1.8GHz (Hy-
perThreading), 512MB memory, 100Mbps Ethernet LAN,
Windows2000, and MPICH1.2.5. Average of maximum
number of cycles to find optimal solution in case of 4 pro-
cessors is shown in Fig. 6. The result shows performance
similar to the performance of the simulation. Average time
to find the optimal solution is shown in Table. 1. Speedup
rates show no significant effect on parallelism between al-
gorithms .

6 Conclusion

Efficient methods for adopt algorithm are presented. The
results shows the efficiency of the methods. Cycles and
time to find optimal solution is reduced. Increase in the
number of messages are relatively small. No significant
effect on parallelism is shown. Improvement of method for
learning solutions and applying to practical problems will
be included in our future work.
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Figure 5. Average number of messages per cycle (weight
of constraint=1,d=3)
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