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Abstract. Reinforcement learning is one of the most popular learning

method for machine learning. Some reinforcement learning algorithms

for adapting to the dynamic environment are proposed. In this paper,

the number of episode to suppress the ine�ective rule after the change of

the environment was examined analytically. Afterwards, the forgettable

pro�t sharing method to suppress the ine�ective rule quickly is proposed,

and the e�ectiveness was experimentally con�rmed comparing the pro-

posed method with conventional method.
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1 Introduction

Reinforcement learning[1{3] is one of the most popular learning methods for
machine learning. It aims to adapt a system to a given environment according
to rewards. The application in a robot system is expected in order to realize the
autonomous action in unknown environment and dynamically changing actual
environment [4, 5]. The use of the routing in dynamic networks is proposed in [6,
7]. Reinforcement learning in the multi-agent system is recently advanced[8{10].
For example, the research for the speedup of the learning by transmitting the
learning result between agents, and imitating other agent is proposed in [11]. At
other, the theoretical consideration of reward allocation in pro�t sharing in the
multi-agent reinforcement learning is also proposed in [12].

In the conventional reinforcement learning algorithm, static environment is
assumed. However, it is important to consider changes in the environment (dy-
namics of the environment). Yamamoto proposed the detection algorithm to
recognize environment changes using stochastic gradient method [13, 14]. How-
ever, learning method after environment changes is important.

In this paper, the number of episodes which needs to suppress the ine�ective
rule as the environment changes was examined analytically. And, the forgettable
pro�t sharing which quickly suppresses the ine�ective rule is proposed.

The paper is organized as follows: In Section 2, the rationality theorem of
pro�t sharing is discussed as a preparation. Number of episodes necessary for
suppression of the ine�ective rule as the environment changes is also discussed.



In Section 3, the proposal technique is discussed. In Section 4, the experimental
method and result are discussed. Finally, in Section 5 we conclude with a brief
summary.

2 Pro�t Sharing in the environmental change

2.1 Preparation

Pro�t Sharing memorizes rule series, which consists of the pair of state x and
action a in the episode, and the rule on the series are reinforced in the following
equation when the reward was obtained.

w(xi; ai) w(xi; ai) + f(r; i) (1)

where w(xi; ai) is the weight of the rule of i on the episode series, r is reward
value, and f is the reinforcement function. Afterwards, we describe the learning
machine as an agent.

The rule \if x then a" which chooses action a of state x is described as �!xa.
Rule series of the interval is called detour, when the rule di�ers in some episode
for the identical state has been chosen. For example, the detour (

�!
xb �
�!
zb �
�!
yb)

exists(Fig.2) for the episode (
�!
yb �
�!
xb �
�!
zb �
�!
yb � �!xa) in the environment of Fig.1.

The rule on the detour may not contribute to the acquisition of the reward. The
rule in detour always is called ine�ective rule in the episode, and the rule except
for it is called e�ective rule. When an ine�ective rule competes with an e�ective
rule, it should reinforce clearly the e�ective rule.
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Fig. 1. Environment

The condition described in (2) which e�ective rule always suppresses the
ine�ective rule was derived in [15].

L

WX
j=i

fj < fi�1; (8i = 1; 2; � � � ;W:) (2)
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Fig. 2. Example of episode and detour

where W is the largest length of episode, and L is the maximum number of
e�ective rules which exists under an identical state. Equal ratio decrease function
shown next, is considered as the simplest reinforcement function which satis�es
the equation (2),

fn =
1

S
fn�1; n = 1; 2; : : : ;W � 1:(S � L+ 1) (3)

The ratio of weight of e�ective rule and weight of the ine�ective rule which
acquired the maximum reward is shown in (4).

P � fi�1 = L

WX
j=i

fj ; (P < 1) (4)

For example, P is shown by the following equation, when the reinforcement
function presented in equation (3) with W =1.

P =
L

S � 1
(5)

2.2 The environment changes

The change of the environment is considered. The reward, which gives the e�ec-
tive rule of identical state, is considered to be constant for the simpli�cation.

The most diÆcult condition in which the ine�ective rule is suppressed in
the new environment is considered. It is clear that to suppress only recursive
and ine�ective rule is the most diÆcult task in the static environment [15].
Recursive rule is the rule in which the state does not change as a result of
action. According to the amount of the ine�ective rule, the suppression of the
ine�ective rule becomes hard. Therefore, the most diÆcult condition is the case
in which the only recursive and ine�ective rule has got all reward of the e�ective
rule in previous environment.

In such conditions, the reward after X episode learning step becomes Rw � X
L
,

because the e�ective rule gets the reward in the every L episode. The initial



value of the ine�ective rule is the value obtained multiplying the number of
episodes from previous environment by the reward which the e�ective rule gets
before environment changing. And, the ine�ective rule gets the reward obtained
multiplying P by the reward which the e�ective rule gets in the new environment.
Therefore, the weight of the ine�ective rule is calculated as G �Rw+P �Rw �

X
L
.

The necessary condition for suppression of the ine�ective rule is shown by
following equation.

G � Rw + P �Rw �
X

L
< Rw �

X

L
(6)

L

1� P
�G < X (7)

where G is the number of episodes of previous environment and Rw is the value
of the reward in which the e�ective rule gets.

A lot of episodes X shown in equation (7) is needed to suppress ine�ective
rule in the most diÆcult condition. For example, number of episodes which needs
to certainly suppression of the ine�ective rule is 12th times as much as number
of episode in the previous environmental change in L = 3 and P = 0:75.

L State of Time t

State of Time t+1

effective rule

ineffective rule

Fig. 3. Example of state with only recursive and ine�ective rule.

3 Forgettable Pro�t Sharing

The reason why the conventional method could not quickly adapt for environ-
mental changes is that the previous information is kept permanently. For adapt-
ing to the new environment, the adapting method which forget the disadvanta-
geously rule in the new environment quickly is suitable. However, to recognize
the environmental change and disadvantageous rule in the new environment is
diÆcult. The forgettable pro�t sharing in which the weight of rule gradually
decreases is proposed.



3.1 Pro�t sharing with queue

Adding queue with an agent was considered in order to eliminate gradually
previous information. The agent puts the reward got in each episode in the
queue(Fig.4).
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Fig. 4. Queue

Let's assume that the number of the episode from previous environment is
larger than the length of the queue. The weight of the e�ective rule is Rw � X

L
,

which is equal to the conventional method. The initial value of the ine�ective
rule is (Qsize�X) �Rw, because to store the reward over the size of the queue is
not possible. Therefore , the necessary condition for suppression of the ine�ective
rule is shown by following equation.

(Qsize �X) � Rw + P �Rw �
X

L
< Rw �

X

L
(8)

Qsize � L

1 + L� P
< X (9)

where Qsize is the size of queue.

3.2 Pro�t sharing with weighted virtual queue

The propose method in 3.1 adding queue with agent is surely e�ective. But to ap-
ply this method , a lot of queue(memory) is needed. Therefore it is impracticable
to use generally. The new method named \weighted virtual queue" is proposed.
This method decreases previous reward virtually. Therefore, \weighted virtual
queue" is expressed in the following equation.

w(x; a) w(x; a)� � +

WX
k=0

g(x; a; k) (10)

g(x; a; k) =

�
f(r; k) (if x = xk and a = ak)

0 (else)
(11)



where � is the forgetting rate.
The number of episodes in previous environment G is set to in�nity, because

the suppression of the ine�ective rule becomes diÆcult, as the initial value of
the ine�ective rule is larger. The weight of the e�ective rule is 1

L

PX

i=1 Rw � �
i�1

which can be derived from equation (10). And, the initial value of the ine�ective
rule is

P
1

i=X+1
Rw � �

i�1. Hence, the necessary condition for suppression of the
ine�ective rule is shown by following equation.

1X
i=X+1

Rw � �
i�1 +

P

L

XX
i=1

Rw � �
i�1

<
1

L

XX
i=1

Rw � �
i�1 (12)

Rw � �
X

1� �
<

Rw(1� P )(1� �
X)

L(1� �)
(13)

�
X
<

1� P

1 + L� P
(14)

4 Experiment

4.1 The experimental method.

The grid world in which the discrimination of e�ective rule and ine�ective rule
is easy is used for the experiment. Fig.5 shows a grid world in which each cell
the agent has four actions(N,S,E,W) and transitions are made deterministically
to an adjacent cell, unless there is a block, in which case no movement occurs.
The agent gets the reward when it arrives at the goal from the start.

We take w, the initial weight, to be 0.1, and Rw, the reward, to be 1, and S,
a parameter of reinforcement function in equation (3), to be 5. In the proposed
method described in 3.1, the Qsize set at 5:0 � 105. Every 1:0 � 103 episodes
were assigned to the same element of the queue. As a result each queue has 500
elements.

In the proposed method which use weighted virtual queue, we set � to
0.999996.

As a result of the preliminary experiment, it is desirable that the environment
was changed after 5:0� 107 episodes, because 3:0 � 107 episodes are necessary
for the convergence using conventional method. But due to the limitation of the
accuracy of the 
oating point calculation, the environment changes after 5:0�105

episodes. The goal is located at G1 in Fig.5, in the case of the environment was
not changed. The arti�ciality environment changes are generated to move the
goal from G1 to G2.

The experiment performed 10 times as changing seeds of random value, and
the obtained mean value is used as �nal result.

4.2 Experimental result and consideration.

No arti�cial environment change The learning curve (the relationship be-
tween number of episodes and number of steps in which agent get reward) is
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Fig. 5. Grid World for experiment.

shown in Fig.6. Converged numerical value of proposed method \weighted vir-
tual queue" becomes worse compare with other methods. This is because the
value of � was set by adjusting as the environment is changed at 5:0 � 105

episodes. However, the same converged numerical value can be taken by substi-
tuting an appropriate value to �( for example, � = 0:99999993 ).

Add arti�cial environment change The learning curve after arti�cial envi-
ronmental change is shown in Fig.7. Fig.8 shows the transition of the weight in
the position Z on Fig.5. The horizontal axis shows number of episodes (arti�-
cial environment change occurred at 5:0� 105). The vertical axis shows the rate
between weight of rule which moves to North and weight of rule which moves to
East. When the rate exceed 1.0, the ine�ective rule is suppressed. Fig.8 shows
also the theoretical number of episodes necessary to suppress the ine�ective rule.

Table.1 shows experimental and theoretical maximum and minimum1 results
which suppress the ine�ective rule. This theoretical value of proposal methods
in Table.1 is very small, because � and Qsize were decided on the assumption
of the most diÆcult condition. It is appropriate to set these value � and Qsize

at most diÆcult condition , because the knowledge of the largest number of the
e�ective rule can not be informed in advance.

5 Conclusions

In this paper, the analytical consideration of the number of the necessary episode
which suppresses the ine�ective rule using pro�t sharing as the environment
changes was performed, and the relation between number of episode before the

1 the derivation procedure is eliminated because of page limitations
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Table 1. Number of episodes in which the ine�ective rule is suppressed.

Learning method Experimental Theoretical maximum Theoretical minimum

value value(L=1) value(L=1)

Conventional Method 5:12 � 105 5:21� 105 4:80� 105

Queue 2:54 � 105 2:55� 105 2:45� 105

Virtual Queue 1:60 � 105 1:61� 105 1:51� 105

environment changes and number of episode necessary for suppressing the in-
e�ective rule was carried out. Forgettable pro�t sharing which suppress the in-
e�ective rule after the environment change within the constant episodes was
proposed, and the e�ectiveness of the proposed algorithm was con�rmed by the
experiment.

The proposed method needs the knowledge of the convergence, but generally

this knowledge can not be informed in advance. Future research will address the
development of this algorithm to apply it in various practical cases.
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