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This paper examines optimizations of file placement and load balancing on an asymmetric
cluster-based file system by means of early reservations of a set of files to be requested by the
client. A client defines a request graph for a set of files based on file attributes and relations,
the structure of the graph is relevant to expected request patterns, which in turn have an effect
on the load distribution over the cluster nodes. The server receives from the client reservations
in advance to make early placement decisions in order to maintain a balanced cluster workload
while satisfying the request graph structural properties and resource requirements. In this
work, a model for the client request graph and a corresponding server decision algorithm are
defined and discussed. The effect of this approach is simulated using variable parameters and
compared against classical load balancing approaches.

1. Introduction

Over the past decade computer clusters have
emerged as the dominant architecture in high
performance computing. Though monolithic
and centralized architectures have powerful
hardware and performance, they are expensive,
unavailable on failure and difficult to scale. On
the other hand, computer clusters provide bet-
ter performance-to-cost ratio, combining the
power of hundreds or thousands of commodity
off-the-shelf computers that can scale to Peta-
bytes of storage. Cluster-based File Systems
are one of the core software components on
such architectures and many solutions are al-
ready available3)1)8), incremental scalability7)

allows the cluster size to grow as needed but
a high frequency of hardware failures requires
replication mechanisms12) to guarantee avail-
ability of the whole system without corrupt-
ing response time6), finally high throughput is
achieved via data caching mechanism14) and
parallel file transfer11).

Becauses of the internet data boom, cluster
file systems left the realm of scientific comput-
ing for use in service environments such as web
search8) and/or computing clounds5). In such
scenarios, data is most often stored in large data
structures with complex relationships and this
implies growing demand for higher lever file sys-
tem designs that understand the nature of data
being stored not only to support efficient pro-
cessing but also to guarantee a balanced quality
of service.
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Our problem can be formulated as such: As-
suming the Server can receive early information
about the datasets to be stored, can it manage
more efficiently its available resources?

Traditionally, the utilized approach for the
server to be aware of data patterns was to per-
form statistical analysis of client requests on
one side and of I/O nodes status report on the
other side, and hence dynamically balance the
system. But this approach suffers from laten-
cies between the measured workload and the
actual workload, due to the time lag between
request arrival, processing and real-time sys-
tem status. Moreover, with rigid semantics the
server is not aware of the relationships of the
data being stored. Therefore to intelligently
manage workload a change in the client/server
interaction is needed.

We propose a novel approach for balancing
load on a cluster using information provided by
the client as early request reservations for a set
of files. Since the file system client is the clos-
est software entity to the user, it is possible to
assume that the client knows best the user be-
havior and hence associated datasets structure,
for instance by the means of statistical account-
ing of user file operations and usage patterns.
Such information as file size, directory struc-
ture, read/write operation frequency, file ex-
piry rate, link distribution and frequency ...etc,
can be acquired by the client before data is up-
loaded to the server. This information could be
very useful to the server if delivered beforehand
and could greatly impact the cluster overall sys-
tem performance.

In the following section we give some back-



ground and related work to the problem, in
section 3, the model for the early reservation
request graph is discussed with the proposed
placement algorithm, in section 4, the evalua-
tion of the proposed method is shown and fi-
nally the conclusion and references in sections
5 and 6 respectively.

2. Background and Related Work

2.1 Background

Let’s consider a typical8) Cluster-based File
System design such as that shown in Fig. 1. A
metadata server (or master) is the central au-
thority for both clients and I/O nodes. For I/O
nodes (or slaves), the master handles critical
metadata information about which nodes store
what files, objects, blocks or part of files and
their replicas; it also monitors their availability
via the heartbeat mechanism, which is a mes-
sage sent by each node to report on workload
and disk space status.

Fig. 1 Typical Cluster-based Architecture

When a client issues a request, the master
looks up its metadata table and responds with
information about where the file and its replicas
are stored, as a metadata response. Then the
client issues an I/O request directly to the cor-
responding slaves, and can download /upload
a file’s parts simultaneously from several nodes
at once, which allows for increased throughput.

Load Balancing is a traditional problem in
distributing computing13). The goal is to
equally share (i.e. balance) the load between
the participating nodes, so that there is no idle
node when other nodes of the system are over-
loaded. Other connected terms are load sharing
and load distributing, but they are technically

more relaxed than Load Balancing. Two of the
most well-known methods are random polling
and round-robin. Load is a general term that
refers to the amount of processing done by a
computer, it can be defined as the length of
CPU queue, or its average over a time period,
the amount of available memory...etc The defi-
nition of the load index is essential in load bal-
ancing algorithms. We define two metrics that
affect the availability of a storage node: space
and workload. The Space metric, denoted S, in-
dicates the amount of disk space available at a
node, and is calculated by summing the sizes of
all files. The Load metric, denoted L, indicates
the amount of workload required for serving a
file, including CPU processing and network op-
erations. It is calculated by summing for all
files in a node, the number of requests for a file
multiplied by its size. We write:

Si =

n
∑

k=1

size(fk) (1)

Li =
n

∑

k=1

rcount(fk)size(fk) (2)

Assuming there are n files in a node i of the
cluster. Note that these metrics are heuristics
based on the literature13), and that these values
are static and considered accurate enough to
support our model.

2.2 Related Work

Request routing and load balancing are well
studied for HTTP infrastructures6), but the
protocol messages are designed from the server
perspectives. SliceFS2) proposed the concept of
a micro-proxy for routing files and requests to
different servers depending on size, effectively
distributing workload; but decisions were static
not client-induced, and target servers were pre-
defined, not versatile. The SEDA project15)

investigated the performance gain of adaptive
scheduling using thread pools but was limited
with Java Virtual Machine performance of the
time. Object-based storage device (OSD)10) is
a new paradigm to storage semantics that com-
bines the flexibility of object oriented program-
ming with the power of file and block based
storage. It is already implemented in some
cluster-based file systems4). OSDs solve the
limitation of current file system interfaces by
providing higher-level semantics that can be de-
fined as objects by the client and uploaded onto
the device allowing it to understand the struc-



ture of data it stores. However, we are un-
aware of a load balancing scheme at the mas-
ter server level that takes full advantage of the
OSD paradigm. Task graph scheduling on a
set of processor is a classical schedulig problem
and active area of research in cluster and grid
environments.A Task Graph is a set of related
tasks also known as workflows. Several algo-
rithms were developped9) to equally distribute
the load based on task priority and dependen-
cies. Constraints specified by the client in ad-
vanced reservation16) are taken into considera-
tion for planning workflow distribution on the
cluster. A file request is similar to a task since it
requires processing and I/O resources and costs
workload on the storage node, but the con-
straints in our problem are different and more
relaxed than those of task scheduling since files
do not impose a time order priority. Neverther-
less, our solution is inspired from it.

3. Balancing Placement of a Request

Graph

3.1 Request Graph Model

We define a request graph as a directed
acyclic graph G(F,R) such that Vertices (F)
represent request files and Edges (R) represent
a request relation between files. We define the
weight of a vertex as a function of the file at-
tributes. In this work, we are interested in at-
tributes that affect load and space metrics, so
we only consider two attributes As for space-
affecting attribute and Al for load-affecting at-
tribute, but this model can be easily extended
to more attributes and metrics. To equally rep-
resent both attributes, the weight of a file is
calculated as the product of its attributes:

W (f) = AsAl (3)
Where As is the file size and Al is the request
frequency, i.e., the number of times a file is
requested. Hence, we can redefine the cluster
space and load metrics for node i, as follow:

Si =

n
∑

k=1

Ask (4)

Li =

n
∑

k=1

W (fk) (5)

We also define the weight of a relation R(i, j)
as the probability that a file fi will request a
file fj. We denote:

R(i, j) = P (j|i) (6)
P (j|i) is a cumulative probability such that the

sum of all request probabilities of files n related
to fi is: 1 =

∑n

j=1 P (j|i). We assume that G
has a single entry file that we call the root file,
and we place no other limitations to the graph
other than that all vertices are connected.
Table 1 describes a simple webgraph that fits
to this model and of which sample values of at-
tributes, weights and relations are set. Note
that if the whole graph is assigned to a single
node, the space and load metrics will be 15 and
30 respectively. Fig.2a shows the corresponding
request graph, where weights (between brack-
ets) and relation values (on the lines) are shown.
The following section is based on it.

Table 1 Sample Directory Structure.

File As Al W R
0 - index 1 10 10 (0,1)=0.1

(0,2)=0.3
(0,5)=0.5
(0,8)=0.1

1 - video 5 1 5
2 - img 1 3 3 (2,3)=0.7

(2,4)=0.3
3 - img1 2 1 2
4 - img2 1 1 1
5 - html 1 5 5 (5,6)=0.6

(5,7)=0.2
(5,8)=0.2

6 - html1 1 3 3
7 - html2 1 2 2
7 - html3 1 1 1
8 - script 1 1 1

3.2 Placement Algorithm

Let’s consider the graph shown in Fig. 2b,
where three placement scenarios S1, S2 and S3
are considered. The squares represent nodes A,
B and C to which the files of the graph are
to be assigned. The ellipses emphasize the re-
lations that are maintained if two related files
are assigned to the same node. The goal of a
placement scenario is to 1) have balanced work-
loads on each node (sum of file weights) and 2)
maintain as may relations (as many ellipses) as
possible.

Scenario S1 is a classic round robin with a
left-to-right Breadth First Search (BFS). At
first, index is assigned to node A, then its chil-
dren (mail, doc, img and video) are assigned
to node B, C, A and B. Then on the second
pass, children of doc and img are assigned, such
that html1, html2 and html3 for nodes C, A
and B, then img1 and img2 for node C and A.
The load metric for each node is is such that



Fig. 2 a) A sample request graph. b) Different Placement methods for a)

La=16, Lb=7 and Lc=10 which is quite unsta-
ble. Moreover, only 2 relations are maintained
(see the ellipses), which are : (index,img) on A
and (doc, html) on C.
Scenario S2 represents a weighted BFS com-
bined with a weighted roundrobin, that we
call bestFit approach. It gives priority to files
with higher weights and searches for the least
loaded node otherwise roundrobin when nodes
are equal. At first index is assigned to node
A, then doc and video to B and C respectively.
Then, img to B (or C) and mail to C. At this
level the cluster is such that (La=10, Lb=8,
Lc=6). Next C is receiving html1, and B gets
html2 then C gets html3. Now it’s (La=10,
Lb=10, Lc=10). At the end, A receives img1
and B receives img2, so that the assigned work-
load is La=12, Lb=11, Lc=10; which is much
more balanced than classical roundrobin but
still doesn’t faithfully maintain file relations;
again only two relations are maintained on node
B only : (doc, html) and (img, img1 )
Finally, scenario S3 is our ideal case where
workload is nearly balanced with maximum file
relations preserved, this represents the target of
our work and is subsequently called BLuRGER.
At first, index is assigned to A. Then, Doc is
assigned because it has the highest weight and
relation, it goes to B. Then img is assigned to
B, because its weight-to-relation product is bet-
ter than video. Next video goes to C. Next
mail is attrated by index towards node A, al-

though B and C are better. Likewise, html1
goes to B naturally, but html2 and html3 are
attrated to B even if C is a better choice. The
same happens for img1 and img2 that go to
C. Here, we notice that the cluster balance is
as follow: La=11, Lb=11 and Lc=11; more-
over, most relations are preserved, only video
was isolated but that’s acceptable because of its
lower weight. The benefits hence are two-fold
for both the cluster’s balance, and the client’s
overhead.

The listing in Fig. 3 shows the algorithm used
to place the request graph onto the cluster, it
starts with the root node and recursively tra-
verses the graph until it finishes placement of
all the files. It also maintains a list of processed
files in order to avoid reassignment of the same
file twice. The assign function is the main pro-
cedure for placement, it takes as parameters a
file to assign and an advice variable, then re-
turns the node to which the file was assigned.
The node returned by the assignment function
is used to build the new advice for the children
(neighbors) of the current file (the parent), the
weight of the advice is relative to the weight of
the parent. This is a means for the currently as-
signed file to tell its neighbors where it has been
assigned and hence ’advice’ them to join him if
the cluster balance allows it to. After assigning
the current file, its related files (neighbors) are
extracted and sorted by descending order of pri-
ority, calculated as the weight attribute times



Placement procedure
Place(file, advice)
//assigns a ’file’ to a node
//using an ’advice’ weight,
//returns the id of the selected node
node = assign(file, advice)

//build the next advice
advice2.id = node.getId;
advice2.w = file.getWeight;

//fetch edges related to ’file’,
//sort by priority and push to job list
links = list file edges
sort(links)
for link in links

push link in jobs list

//recursive call for the neighbors of ’file’
for job in jobs

Place(job, advice2)

Assignment procedure
Assign(file, advice)
//skip file if already assigned,
//return the node assigned to it
if(file processed)
return file.getLocation();

//calculate node rating parameters
calculate As, Al
calculate Smax, Lmax
//weight each node based on above
for Ni in nodes N

N[i].w = rate(s) + rate(l)

//adjust the weight of the adviced node
//using advice weight and power factor
N[advice.id] += factor * advice.w;

//return the node with the best rating,
//i.e., with the heaviest weigth
return max(N)

Fig. 3 Pseudo-code for core processing elements

the relation attribute, the sorted list is pushed
to a job queue for BFS recursive traversal. This
way the file requests that are most likely to fol-
low the current file’s request are assigned to the
same node to reduce client overhead. If the re-
lated file weight is heavy enough it will not fol-
low the advice of the parent and gets assigned
on a different node.

Fig. 4 shows the assign function and the
advice mechanism. The Assign function has
two selection criteria : a criteria based on the
attributes of the file and a criteria based on

Fig. 4 Advice Model

the advice of the parent, both are combined to
satisfy the current file’s resource requirements
and it’s parent relation requirements. The at-
tributes based selection works in a way similar
to a map-reduce function. In the map phase,
each attribute of the file (As and Al) is rated
against a cluster node metric (Si and Li). On
the reduce phase, the node with the maximum
rating is selected for assignment. The rate is
a product of the file attribute and the node
metric, transformed to a fraction of the met-
ric cluster maximum. This approach is chosen
so that the rating mechanism is relative to the
busiest node of the cluster. Consequently, the
most available node (for each metric) has the
highest fraction and attracts the corresponding
attribute. The rating for each attribute is cal-
culated as follows:

rate(s) = As
(Smax − Si)

Smax
(7)

rate(l) = Al
(Lmax − Li)

Lmax
(8)

Consider the example in Fig.4, and assume
that the busiest node has both Si and Li val-
ues of 100. Also consider that (Si,Li) values for
nodes 1, 2 and 3 are respectively (75, 40), (50,
100) and (75, 60). Now, for As=5 the relative
rating values for each node are : 1.25 for nodes
A and C and 2.5 for node B. Similarily for Al=5
attribute, the ratings are (3, 0 and 2) for nodes
A, B and C respectively. When both rating
functions are combined, the assignment proce-
dure tries to satisfy all the file’s requirements,
that is size attribute and frequency attribute.
From Fig. 4, the best node for file A is Node A
with a rating of 4.25, which is better than 2.5
for B and 3.25 for C.
Now that the current file knows to which node it



is assigned, it can advise its neighbors via the
advice variable. The advice variable has two
parts: the id and the weight. The id is the id
of the node to which the advice is sent, and the
weight is the strenght of the advice. The advice
weight (Adviceweight) depends on the weight of
the parent (i) and the weight of its relation to
the advised child (j ). This is calculated as fol-
lows:

Adviceweight = W (fi)R(i, j) (9)
The more important the parent and/or the
higher the probability that it requires the child,
the more it affects the selection process of the
child.

4. Evaluation

4.1 Experimental Setup

We simulated a typical web-based producer/-
consumer scenario, in which a producer makes
reservation for a request graph, that is sched-
uled by the master on a 10 nodes cluster, then
the consumers issue requests based on the re-
quest graph shape. Table 2 describes the differ-
ent parameters used in the experiment. The
’graph size’ is the number of vertices in the
graph. ’graph density’ is the number of edges
between vertices. ’relation weight’ is the prob-
ability value for each edge. ’attribute’ is a dis-
crete value for each of the vertex weight. ’ad-
vice factor’ is the multiplying constant for the
advice equation described above.

Table 2 Experiment Parameters

Parameter Values
Graph Size 10, 100, 1000, 10000

Graph Density 2

√

GraphSize

Relation Weight 0.01 · · · 0.99, randomly generated
Attribute 1 - 10 - 100, randomly generated
Advice factor 0.5, 1, 2

The simulation strategy is divided into three
main steps described as follows: Graph Genera-
tion: A graph is generated with a set of param-
eters as described in table 2. In total four graph
sizes with random attributes and relations are
generated, then saved onto a file to be used by
both step2 (the master placement) and step 3
(the consumers’ request).

Graph Placement: The file graph is loaded
onto the master simulator that performs the
placement in the metadata database, running
one of the three placement algorithms dis-

cussed in section 3.2: RoundRobin (RR), Best-
Fit (best) and BLuRGER. For each of the three
algorithms, an indepedent run of the simulator
resets the metrics for the cluster nodes to initial
values. In total, five runs including three runs
for each advice factor just for BLuRGER.

Fig. 5 Request Generation

Client Request Simulation: this step is exe-
cuted after the previous steps are finished in
order to simulate the concept of early reserva-
tion. The simulator launches 50 client threads,
each of which sends a number of requests that
is relevant to the shape of the graph. At each
request the master updates the Load and Space
metrics. The total number of requests for each
file is dependent on the frequency attribute of
the file as well as the relation to its neighbors
with their respective attributes. Equation 10
and Fig. 5 illustrate this concept: Ali requests
are generated for the parent, then AljR(i, j) re-
quests are generated for child j and AlkR(i, k)
requests are generated for child k. The general
formula is described in :

NRi = Ali

n
∑

k=1

AlkR(i, k) (10)

Using this scheme, the workload on the clus-
ter is a function of the request graph structure.

4.2 Measurements and Analysis

The results are comparing the three algo-
rithms described in Fig.2 : simple RoundRobin,
BestFit and BLuRGER.

Figure 6 shows the distribution of used space
as a fraction of the whole file set size. A per-
fect balance is logically taken by BestFit since
its purpose is to look for the best space place-
ment and hence behaves like a weighted round
robin which explains the clean distribution.
RoundRobin on the other side is much more
unstable due to the difference in file sizes dis-
tributed sequentially. Finally BLuRGER per-
forms in between with a comparable perfor-



Fig. 6 Space Distribution

mance to bestFit.

Fig. 7 Workload Distribution

Figure 7 shows the distribution of request
on the cluster nodes as a variance from the
mean. Although BLuRGER doesn’t perfectly
balance the request load because it also tries
to satisfy the space metric constraint, it has
yet the smallest standard deviation compared
to RoundRobin and BestFit with a value of
0.01 which means that it is more stable than
other methods. At the best case it can surpass
RoundRobin with a 2.5% while at the worst
case it is surpassed by RoundRobin by 0.8%.

Figure 8 shows the processing time of the
three algorithms as the graph size scales out
from 10 to 10000 nodes. RoundRobin is the
fastest in processing which is logical due to the
minimum assignment time, nevertherless even
at the largest graph size BLuRGER processing
time is only 2.14 times slower than RR which
is acceptable.

Fig. 8 Size Effect on Algorithm Processing Time

5. Conclusions and Future Work

In this paper we have proposed an original ap-
proach to client/server interactions in a cluster-
based file system. By assuming that the client
knows in advance the attributes and relations of
a set of files, the client can make early reserva-
tion of a request to the masters in order to op-
timize file placement and cluster load balance.
The fileset was modelled as a directed acyclic
graph similar to the one used in scheduling re-
lated tasks on a set of processors. The pro-
posed placement algorithm tries to satisfy the
resource requirements for graph vertex weights
and takes into considerations edges weights via
an advice mechanism. The experimental data
on a randomly generated graph have shown
that the claims of this paper are valid compared
to classical algorithms such as roundrobin or
bestfit, discussed above.
As for future work it is necessary to investigate
further the behavior of this algorithm on a re-
alistic dataset such as a webgraph of consider-
able proportions. Moreover, the algorithm can
be easily extended to support more complex at-
tributes and relations and/or more fine grained
cluster metrics. Finally, a successfull imple-
mentation will lead us to reconsider the client
to server semantics and consequently the way
clients store data, in order to be able to con-
struct enough information during request graph
reservations.
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