
Improvement of efficiency in pseudo-tree based
distributed best first search

Toshihiro Matsui and Hiroshi Matsuo ∗

Abstract— Distributed constraint optimization
problem is an area of research in multi agent system.
In recent years, a distributed constraint optimization
algorithm, which performs best-first search in bottom
up manner according to pseudo tree, was proposed.
In this paper, we propose several efficient methods for
the distributed bottom up best-first search. Deriva-
tion of partial solution is introduced to decrease num-
ber of backtracking among agents, Synchronization
control method is applied to decrease number of com-
munication message cycles. In addition, error bounds
are applied to obtain quasi optimal solution within
less number of message cycles. Experiment results
are shown for the efficiency evaluation of the proposed
heuristics methods.
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1 Introduction

Distributed constraint optimization problem (DCOP) [1]
[2] [3] [4] [5] [6] is an area of research in multiagent system.

In recent years, a number of algorithms, which solve
DCOPs using pseudo tree, have been developed [5], [8].
The pseudo tree is an efficient structure, which pro-
vides divide and conqur techniques for search algorithms.
These distributed search algorithms perform dynamic
programming and branch-and-bound method. Another
pseudo tree based algorithm[9] performs best-first search
in bottom up manner. The best-first search is a well
known heuristic method. However, simple bottom up
computation causes a large number of backtracking.

In this paper, we propose several efficient methods for
the distributed bottom up best-first search. Derivation of
partial solution is introduced to decrease number of back-
tracking among agents, Synchronization control method
is applied to decrease number of communication message
cycles. In addition, error bounds are applied to obtain
quasi optimal solution within lesser number of message
cycles.

∗Nagoya Institute of Technology, Nagoya-shi Showa-ku Gokiso-
cho Aichi Japan 466-8555. Email: {matsui.t, matsuo}@nitech.ac.jp

2 Formalization

In this section, we formalize distributed constraint op-
timization problem, pseudo-tree, and best-first search
method.

2.1 Distributed constraint optimization
problem

A distributed constraint optimization problem is formal-
ized as follows.

• X = {x1, · · · , xn} is a set of variables.

• D = {D1, · · · , Dm} is a set of domain of variables.

• F is a set of binary function. fi,j ∈ F is a function
Di × Dj → R. The function fi,j denotes utility of a
pair of values (i.e. {(xi, di), (xj , dj)}).

The optimal solution of the problem is an assignment
which maximizes sum of utilities. Each agent (node) i
has an own variable xi. Each agent performs message
passing communication.

2.2 Pseudo tree

Pseudo tree[8] gives variable ordering of constraint net-
work. A typical pseudo tree is generated by depth first
search on constraint network. An example of pseudo tree
is shown in figure 1. Pseudo tree contains all nodes and
all edges of original graph. The edges are categorized
into tree edges and back edges. There are no edges be-
tween different sub-trees. Therefore, divide and conqur
techniques can be used in search algorithm. Moreover,
the pseudo tree contains spanning tree of original graph.
The spanning tree determines communication paths of
distributed computation. We will use several notations
as follows.

• pi: Parent node of node i.

• Ci: Set of child nodes of node i.

• PPi: Subset of ancestor nodes of node i. The nodes
in PPi are directly connected to node i through back
edges.
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Figure 1: Pseudo tree

• PP i: Subset of ancestor nodes of node i. A node
in PP i is directly connected to at least one nodes of
sub tree which is routed at node i. PPi includes pi.

2.3 Best-first search using pseudo-tree

Best-first search is a well known heuristic method.
Boundary of utility for distributed bottom-up best-first
search, which uses pseudo-tree, is formalized as follows[9].

Let Si denote a set of partial solutions which is related
to sub tree rooted at node i. Si contains assignments of
values of variables for all node in {i}∪PP i. If i is a root
node of pseudo tree, Si contains assignments for node i.
If i is a leaf node, Si contains assignments for all nodes
in {i} ∪ {pi} ∪ PPi.

Let u(s) denote utility of partial solution s. u(s) takes a
value in [0,∞).

Each node sends partial solution s and u(s) to its parent
node. When node i sends s and u(s) to parent node pi,
node i removes (xi, di) from the solution s. Let S−

i a set
of partial solution such that its (xi, di) is removed. Let
S−sent

i a set of partial solutions which are already sent by
i. S−sent

i is a sub set of S−
i . An important assumption

is that each node i sends solution and utility in best-first

Algorithm 1: ODPOP (synchronized)
1 Initiation:
2 S−sent

i ← ϕ; askedi ← false; WaitForReplyi ← ϕ;
3

4 Management:
5 if (i is the root node ∨ askedi)∧|WaitForReplyi| = 0 {
6 if sufficient condition is satisfied {
7 if i is the root node {
8 select best assignment (xi, d

∗
i );

9 send VALUE({(xi, d
∗
i )}) messages to j ∈ Ci;

10 terminate; }
11 else {
12 select next best solution s;
13 send GOOD(s,u(s)) message to pi; askedi ← false; }}
14 else {
15 send ASK messages to j ∈ Ci;
16 WaitForReplyi ← Ci; }}
17 wait for message receiving;
18

19 ASK message handler:
20 askedi ← true;
21 goto Management;
22

23 GOOD(sj ,u(sj)) message handler:
24 Si,j ← Si,j ∪ {sj}; record u(sj);
25 WaitForReplyi ← WaitForReplyi\{j};
26 goto Management;
27

28 VALUE(spi) message handler:
29 select best assignment (xi, d

∗
i ) for spi;

30 send VALUE(spi ∪ {(xi, d
∗
i )}) messages to j ∈ Ci;

31 terminate;

manner. The assumption is shown as follows.

∀s′ ∈ S−sent
i , ∀s ∈ S−

i \S−sent
i , u(s′) > u(s). (1)

Let Si,j a set of partial solutions which are sent from node
j ∈ Ci and received by node i. Si,j is a sub set of Si. Let
slast

j ∈ Si,j denote partial solution which is most recently
received. Boundary of utility for Si,j is shown as follows.

UBi,j(s) =


∞ Si,j = ϕ
u(slast

j ) Si,j ̸= ϕ,
{s′|s′ ≃ s, s′ ∈ Si,j} = ϕ

max
s≃sj ,sj∈Si,j

u(sj) otherwise

(2)

LBi,j(s) =

{
max

s≃sj ,sj∈Si,j

u(sj) {s′|s′ ≃ s, s′ ∈ Si,j} = ϕ

0 otherwise
(3)

Let δi(s) denote local sum of utilities.

δi(s) =
∑

k
fk,i({(xk, dk), (xi, di)}) (4)

where k ∈ {pi} ∪ PPi, {(xk, dk), (xi, di)} ∈ s.

Boundary of utility for s ∈ Si is shown as follows.

UBi(s) = δi(s) +
∑

j∈C
UBi,j(s) (5)



LBi(s) = δi(s) +
∑

j∈C
LBi,j(s) (6)

Boundary of utility for s ∈ S−
i is shown as follows.

LB−
i (s) = max

di∈Di

{LBi(s ∪ {(xi, di)})} (7)

UB−
i (s) = max

di∈Di

{UBi(s ∪ {(xi, di)})} (8)

The sufficient condition to select next solution s ∈
S−

i \S−sent, according to best-first ordering, is shown as
follows.

∃s ∈ S−\S−sent,∀s′ ∈ S−\(S−sent ∪ {s}), (9)
LB−

i (s) ≥ UB−
i (s′)

If a solution s ∈ S−\S−sent satisfies the condition, node
i is able to send the solution s and utility u(s) = LB−

i (s)
to pi.

In the root node r of pseudo tree, first best solution is
optimal. When the first best solution is evaluated, node
r is able to decide the optimal solution. Then, node r
sends the optimal solution to child nodes. In other nodes,
optimal solution is decided according to optimal solution
of their parent nodes.

ODPOP[9] is a distributed constraint optimization algo-
rithm which performs best-first search using pseudo-tree.
Brief sketch of the ODPOP is shown in Algorithm 1 1.
The algorithm consists of two phases. In first phase,
utilities of partial solutions are computed in bottom up
manner according to pseudo-tree. In second phase, opti-
mal solution is decided in top down manner according to
pseudo-tree. In this paper, we propose efficient methods
based on the algorithm.

3 Proposed Method

In this section, several efficient methods for ODPOP
based algorithms are proposed.

3.1 Derivation of partial solution

In bottom up computation of utility, each node has no
knowledge about utilities between ancestor nodes. Each
node i selects its next partial solution s ∈ S−

i \S−sent

with utilities which are related to PP i. Utilities between
ancestor nodes are estimated as zero. The estimated util-
ities are evaluated in ancestor nodes after GOOD message
propagation. Such late evaluation may causes backtrack-
ing in higher ancestor node. The backtracking increases
ASK/GOOD propagation.

We apply derivation of small partial solution to reduce
over estimation of utility. The small solution is com-
patible with original solution. However, the small so-
lution does not include several value assignments about

1For convenience, description of algorithm is modified.

Algorithm 2: Synchronization control in message passing
1 Initiation:
2 S−sent

i ← ϕ; askedi ← false; askedSolutioni ← none;
3

4 Management:
5 if i is the root node ∨ askedi {
6 if sufficient condition is satisfied {
7 if i is the root node {
8 /∗ same as Algorithm 1 ∗/ }
9 else {

10 select next best solution s;
11 send GOOD(s,u(s)) message to pi;
12 if s ≃ askedSolutioni { askedi ← false; }}}
13 else {
14 select next best solution s;
15 if ASK(s) messages have not been sent {
16 send ASK(s) messages to j ∈ Ci; }}}
17 message receiving; goto Management;
18

19 ASK(spi) message handler:
20 askedi ← true; askedSolutioni ← spi

21 goto Management;
22

23 GOOD(sj ,u(sj)) message handler:
24 Si,j ← Si,j ∪ {sj}; record u(sj);
25 goto Management;
26

27 VALUE(spi) message handler:
28 /∗ same as Algorithm 1 ∗/

higher ancestor nodes. Therefore, it reduces backtracking
in higher ancestor nodes.

The small solution is introduced for utility of next solu-
tion. Let s∗ denote small solution for u(s) of next solution
s. s∗ is a subset of s′ ∈ S−. Therefore s∗ does not in-
clude several value assignment in s′. Let S∗ denote a set
of partial solutions which are not included in s∗. s∗ must
satisfy the conditions as follows.

∀t ∈ S∗, LB−(s∗ ∪ t) ≥ u(s) (10)

To decide the assignments which are excluded from s,
additional search processing is necessary. In this study,
we limit the search range of variables in s, from highest
ancestor node to Lth node.

Node i sends GOOD messages, which include small so-
lution s∗ and u(s∗) = u(s), to its parent node pi. Value
assignments, which are not included in s∗, can be con-
sidered as don’t-care variables. Therefore, s∗ compatible
with more number of solutions in ancestor nodes.

The small solution s∗ includes a lesser number of value
assignments, if utility u(s∗) takes a lower value. Several
small solutions in Si,j , which have different utilities, may
be overlapped in solution space. Therefore, we also use
best-first ordering for evaluation of utility.
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Figure 2: Average number of cycles

3.2 Synchronization control in message
passing

If ODPOP algorithm is performed in synchronous man-
ner, pairs of ASK/GOOD messages are exchanged be-
tween parent and child nodes. However, such strict mes-
sage passing causes delay of processing. On the other
hand, continuous sending of GOOD messages without
any ASK messages, is not efficient.

We propose a heuristic method that parent node indi-
cate next best solution in ASK messages. When node i
send ask messages, node i select next best solution which
has not been sent to pi. The solution is sent to cj ∈ Ci

with ASK messages. Each child node cj registers the
next solution. And each child node cj continuously sends
solutions until a solution, which is compatible with reg-
istered solution, has been sent. The processing is shown
in Algorithm 2.

3.3 Error bounds of utility

In worst case, time complexity of best-first search and
space complexity of dynamic programming, are exponen-
tial. To reduce computation and memory use, we apply
error bounds of utility. Let b denote error bounds for
each node. Solution s∗′ and utility u′(s∗′), which include
error of utility, are defined as follows.

u(s∗′) ≥ u′(s∗′) ≥ max{u(s∗′) − b, 0} (11)

The error bounds may reduce size of s∗′ and number of
elements of Si,j .

4 Property of proposed methods

Time complexity, space complexity and soundness of
modified ODPOPs, which use proposed methods in sub-
section 3.1 and 3.2, are similar to original algorithm.

Termination of modified ODPOPs, which use proposed
methods in subsection 3.1, 3.2 and 3.3, are similar to
original algorithm.

5 Evaluation

We evaluated proposed methods using computational ex-
periments. In the experiments, message passing and pro-
cessing are simulated as follows.

1. Each node has message queues for sending and re-
ceiving message.

2. The simulator iterates message cycles. A message
cycle consists of receive-process-send phase and ex-
change phase.

3. In receive-process-send phase, each node gets mes-
sages from receiving queue and process the messages.
Then each node puts messages to sending queue, if
it is necessary.
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4. In exchange phase, messages in sending queue of
source nodes are moved into receiving queue of des-
tination nodes.

We use two types of graph coloring problems with three
colors. In one type of problem, utility functions are set

as a (maximum) constraint satisfaction problem ((max)
csp). In the other type of problem it is set as constraint
optimization problem (cop). Utility functions are set us-
ing random integer numbers between [1, 10].

Scale of problem is decided using number of nodes n and
link density d. Please note that these problems are rather



loose constrained problems. Our purpose of the experi-
ment is to evaluate the effect of proposed methods for
best-first search.

Synchronized ODPOP and proposed methods are evalu-
ated. Parameter L for Derivation of small partial solution
is set to 2. Parameter b for error bounds are set to 1 or
2.

5.1 Effect of small solution and synchroniza-
tion control

Average number of cycles are shown in figure 2. In the
case of (max) csp (d=1), both proposed methods take
least number of cycles. On the other hand, in case of
cop (d=1), only synchronization control takes less cycles
than other methods.

In the case of (max) csp (d=1.125), both proposed meth-
ods take less cycles than odpop (sync).

Total number of messages are shown in figure 3. In any
case, proposed methods reduce total number of messages.
In the case of (max) csp and cop, synchronization control
reduces number of ASK messages. That increases number
of GOOD messages. However, total number of messages
are not significantly increased.

Total size of solutions, which are sent with GOOD mes-
sages, are shown in figure 4. The results show that small
solution reduces the size of solutions.

5.2 Difficulty of problem on introducing
small solution

In 5.1, efficiency of small solution is not significant. The
reason for this is difficulty of problem. In constraint op-
timization problem, there are the many combinations of
utility value. Therefore, introduction of small solution
takes low efficiency when utility function takes many dif-
ferent utility values.

Experiment results are shown in fuigure 5, when util-
ity function takes different number of utility values. In
this experiment constraint optimizatoin problems and
DPOP algorithm with the introduction of small solu-
tion is used. The utility functions take integer values
in {1, 10}, {1, 5, 10}, or [1, 10].

The result shows that efficiency of small solution de-
creases according to number of utility values.

5.3 Effect of error bounds

Experiment results of the error bounds are shown in Fig-
ure 6. In the case of cop(d=1.125), error bounds reduce
number of cycles, number of messages and total size of
utilities.

Maximum error of solutions are shown in Table 1. The
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Figure 5: Difficulty of problems (cop, d=1.125)

Table 1: Maximum error of solutions (%)
problem n d error bounds

1 2
(max)csp 25 1 0 0

1.125 0.7 1.1
50 1 0 0

1.125 0.7 0.7
100 1 0 0

1.125 1.1 1.1
cop 25 1 0.1 0.5

1.125 0.1 0.5
50 1 0.3 1.0

1.125 0.1 0.6
100 1 0.2 0.8

1.125 0.2 0.6

results show that error ratio increases according to error
bounds. However, the error ratio is less than upper limit
of error ratio. In the case of maxcsp, upper limit of error
is equal to n × b.
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Figure 6: Using error bounds (cop, d=1.125)

6 Conclusions and Future Work

In this paper, we proposed heuristic methods for pseudo-
tree based distributed constraint optimization method.
Derivation of partial solution is introduced to decrease
number of backtracking among agents, Synchronization
control method is applied to decrease number of com-
munication message cycles. Error bounds is applied to
obtain quasi optimal solution within less number of mes-
sage cycles. Experiment results show the efficiency of
proposed methods.

More detailed evaluation, integration with other algo-
rithms and applying to practical problems for the pro-
posed methods will be considerd for future work
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