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ABSTRACT

This paper describes the design and evaluation of
an auto-memoization processor. The major point of this
proposal is to detect the multilevel functions and loops
with no additional instructions controlled by the compiler.
This general purpose processor detects the functions and
loops, and memoizes them automatically and dynamically.
Hence, any load modules and binary programs can gain
speedup without recompilation or rewriting.

We also propose a parallel execution by multiple
speculative cores and one main memoing core. While main
core executes a memoizable region, speculative cores exe-
cute the same region simultaneously. The speculative exe-
cution uses predicted inputs. This can omit the execution
of instruction regions whose inputs show monotonous in-
crease or decrease, and may effectively use surplus cores
in coming many-core era.

The result of the experiment with GENEsYs: genetic
algorithm programs shows that our auto-memoization pro-
cessor gains significantly large speedup, up to 7.1-fold and
1.6-fold on average. Another result with SPEC CPU95
suite benchmarks shows that the auto-memoization with
three speculative cores achieves up to 2.9-fold speedup
for 102.swim and 1.4-fold on average. It also shows that
the parallel execution by speculative cores reduces cache
misses just like pre-fetching.

KEY WORDS
memoization, computational-reuse, speculative multi-
threading, CAM

1 Introduction

As semiconductors goes smaller, microprocessors are com-
ing to the crossroads of speedup techniques. So far, the la-
tency of microprocessors have been controlled by the gate
latencies. Hence, transistor scaling provided higher clock

for microprocessors, and it made microprocessors faster.
But now, the interconnect delay is going major and the
main memory and other storage units are going relatively
slower. In near future, high clock rate cannot achieve good
microprocessor performance by itself.

Speedup techniques based on ILP (Instruction-Level
Parallelism), such as superscalar or SIMD, have been
counted on. However, the effect of these techniques has
proved to be limited. One reason is that many programs
have little distinct parallelism, and it is pretty difficult for
compilers to come across latent parallelism. Another rea-
son is the limitations caused by other processor resources,
for example, memory throughput. Even if the compilers
can extract parallelism, the memory throughput restricts the
issue width. Therefore, microprocessors are under the pres-
sure of necessity of novel speedup techniques.

Meanwhile, in the software field,memoization[1] is
a widely used programming technique for speedup. It is
storing the results of functions for later reuse, and avoids
recomputing them. As a speedup technique, memoization
has no relation to parallelism of programs. It depends upon
value locality, especially input values of functions. There-
fore, memoization has a potential for breaking through the
stone wall the speedup techniques based on ILP have run
into.

Memoization brings a good result on expensive func-
tions, but it requires being rewritten of target programs.
The traditional load-modules or binaries cannot enjoy
memoization. Furthermore, the effectiveness of memo-
ization is influenced much by programmers. Rewriting
programs using memoization occasionally makes the pro-
grams slower. Memoization costs a certain measure of
overhead because it is implemented by software.

We propose an auto-memoization processor which
makes traditional load-modules faster without any software
assist. There is no need to rewrite or recompile target pro-
grams. Our processor detects functions and loop iterations
dynamically, and memoize them automatically. On-chip
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func:

  :

  :

 return %x

main:

  :

 call func

  :
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  :

  :

.LL3:

  :

  :

 ba .LL3
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  :

Figure 1. Memoizable Instruction Regions.

ternary CAM (Contents Addressable Memory) stores the
inputs and outputs.

The rest of this paper is organized as follows. The
next section describes the design and behavior of auto-
memoization processor, and Section 3 presents parallel ex-
ecution model with speculative cores. Section 4 shows the
result of experiments to evaluate the processor. After a
brief discussion of related work in Section 5, we conclude
this paper in Section 6 showing our future work.

2 Auto-Memoization Processor

2.1 Outline

Our auto-memoization processor memoize all functions
and loops. Figure 1 shows the memoizable instruction re-
gions. A region between the instruction with a callee label
andreturn instruction is detected as a memoizable func-
tion. A region between a back branch instruction and its
branch target is detected as a memoizable loop iteration.
This processor detects these memoizable regions automat-
ically and memoizes them.

Figure 2 shows the structure of auto-memoization
processor. Memoization system consists of memoization
engine and memo table:MemoTbl. Processor core has
alsoMemoBuf: a small writing buffer for MemoTbl. En-
tering to the memoizable region, the processor refers to
the MemoTbl (reuse test) and compares current inputs with
former inputs which are stored in MemoTbl. If the current
input set matches with one of the stored input sets on the
MemoTbl, the memoization enginewrite backs the stored
outputs to cache and registers. This omits the execution of
the region and reduce whole execution time.

If the current input set does not match with any past
input sets, processor stores the inputs and the outputs of the
region into MemoBuf while executing the region as usual.
At the end of the region, the memoization enginestores the
contents of MemoBuf into MemoTbl for future reuse.

2.2 Inputs / Outputs of Memoizable Region

For memoing instruction regions, processor need to recog-
nize what are the inputs and outputs of the regions dynam-
ically. The inputs of a function are not only its arguments
but also the variables which are referred to in the function.
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Figure 2. Structure of Auto-Memoization Processor.

Strictly speaking, the variable which is read and has not
been written in the function is one of the inputs. If there
is a write access to a variable prior to read, the variable is
not an input. Referring a variable can be observed as a read
access to a register or main memory. Hence, the processor
can hook the read accesses and detect variable references.

Now, there is an exception. There is no need to treat
function-local variables as inputs, even if they are referred
in the function. That is to say, the processor need to dis-
tinguish the accesses to local variables from the accesses to
non-local variables. Generally, the operating system spec-
ifies the upper limit of the data/stack size statically. Our
processor tells global variables from local variables by this
boundary, and tells parent-local variables from local vari-
ables by the value of the stack pointer just before current
function is called. On the other hand, there is no way to
know local variables from non-local variables for loops.
Therefore in loops, all referred variables are treated as in-
puts.

Outputs can be also detected in a similar way. The
variables assigned in the instruction region are the outputs
of the region, but the local variables are excluded.

2.3 Memo Tables

MemoBuf: Through the execution of an instruction re-
gion, the processor stores the addresses and the values of
inputs/outputs to MemoBuf. Note that the memoizable re-
gions in programs are usually nested. Figure 3 shows a
simple example. A functionB is called in another function
A, andB uses global variablesg, h as its inputs. WhenB
is directly called,g andh are inputs only forB. WhenA is
called, these variablesg, h are inputs not only forB but also
A. That is, the processor should memorize inputs/outputs
of nested regions simultaneously. We make the depth of
MemoBuf six, and each MemoBuf line can store the one of
the nested instruction regions. At the end of a region, the
corresponding line is popped from MemoBuf and copied
into MemoTbl.
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int main(){
 int g = 4;
 int h = 2;
 int a = A( 3 );
}

int A(int x){
 return B( x*2 );
}

int B(int x){
 int b = x;
 if( x > 3 )
  b += g;
 else
  b += h;
 return b;
}

g h

3

6B()B()

A()A()

main()main()

Figure 3. Nested functions.: The global variablesg, h
should be treated as inputs not only forB but alsoA.

Input tree: A series of inputs for a certain instruction re-
gion can be represented as a sequence of the tuples each
of which contains an address and a value. In one instruc-
tion region, the series of input addresses sometimes branch
off from each other. For example, after a branch instruc-
tion, what address will be referred next relies on whether
the branch was taken or not-taken. Let’s see the program
shown in Figure 3. The branch taken/not-taken of the if-
else statement inB depends on an input valuex, and the
value ofx effects the next input variable (or address). In
other words, the value of an input variable can alter the
subsequent input addresses.

Therefore, the universal set of the different series of
inputs for an instruction region can be represented as a mul-
tiway input tree. Each node of the tree represents register
number or memory address which is referred in instruc-
tion regions, and each edge represents the stored value in
it. Treating the start address of a memoizable region as one
of the inputs of the region, the whole input sequences of all
memoizable regions are represented by one big input tree.
A series of inputs of a memoizable region is represented as
a way from the root to a leaf on this tree.

MemoTbl: Now, MemoTbl should keep this input tree in
it. Figure 4 shows the input tree and the brief structure of
MemoTbl. MemoTbl consists of CAM/RAM parts. The
CAM part is for edges of the input tree, and the RAM part
is for nodes of the input tree and outputs. Considering the
CAM width and granularity, we define the length of edge
value as 16 bytes.1 An edge of input tree is corresponds
to a CAM line. Hence the address of CAM line works as
the index for the edge. Each CAM line has a value field
and an index field which points to its parental line. There is
also a time stamp field (not shown in Figure 4). It remem-
bers the last access time of each lines. Running out of the
MemoTbl, the memoization engine sweeps old entries all
together by ‘Search and Delete’ instruction of the CAM.

Figure 4 shows how input matching goes. First, the
memoization engine reads the value of program counter

1For simplification, it is represented as 32 bits in Figure 4.
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Figure 4. Structure of MemoTbl.

(PC) and registers. Suppose the value was ‘----1000 .’
The CAM entry stores whole cache line which includes
the input. Hence, the non-input bits are masked. They
are implemented bydon’t carebits on ternary CAM. The
memoization engine searches the concatenation of ‘FF’
and ‘----1000 ’ through the MemoTbl CAM. ‘FF’ rep-
resents the tree root. The entry ‘00 ’ is picked up and
‘addr1 ’ is adopted as next input address. Memoization
engine reads the memory address ‘addr1 ’ and get the
value ‘00110000 .’ Next search key is the concatena-
tion of the index ‘00 ’ and ‘00110000 ’. In this way, the
subsets of inputs are searched repeatedly. When the flag
‘E’ which represents the tail of inputs is detected, current
inputs are proved to be equivalent to a series of past in-
puts, and then the execution of the instruction region can
be omitted.

3 Parallel Speculative Execution

As a matter of course, memoization can omit the execution
of a instruction region only if the current input values for
the region match completely with the input values which
are used in former execution. Hence, for example, a loop
which uses its iterator variable as its input never benefit
from memoization.

Meanwhile, many of microprocessor companies are
switching to multi-core designs today. There is a story go-
ing around that processors with hundreds of cores may be
delivered in another decade. But how can we use these
many-coreprocessors effectively is still under review be-
tween researchers.
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Figure 5. Auto-Memoization Processor with Speculative
Cores.

Speculative multi-threading (SpMT) is an answer to
this question, but it is not so easy to deal with cross-
thread dependence violation and thread squash. We append
some speculative cores to our auto-memoization processor.
These cores help the memoization-unfriendly regions men-
tioned above. Figure 5 shows the new structure of the auto-
memoization processor with speculative cores.

Each core has its own MemoBuf and first level data
cache. The second level data cache and MemoTbl is shared
between all cores. While the main core executes an mem-
oizable instruction region, speculative cores execute the
same region using predicted inputs. The inputs are pre-
dicted from the last value being managed by the main core
and strides of the values. With three speculative cores, the
instruction region is executed using three predicted input
sets concurrently with the main core. Speculative cores
store the results into MemoTbl. If the input prediction was
correct, the main core finds the next result in MemoTbl.
Unlike as ordinaryspeculative execution, even if the input
speculation proves to be incorrect later, main core need not
to pay a cost for any backout processes. This extension
can omit the execution of instruction regions whose inputs
show monotonous increase/decrease.

4 Performance Evaluation

We have developed a single-issue simple SPARC-V8 sim-
ulator with auto-memoization structures. This section dis-
cusses the performance of the processor.

4.1 Processor Configuration

The simulation parameters are shown in Table 1. The
cache structure and the instruction latency are based on
SPARC64[2]. As for memo tables, we defined the size of
MemoBuf as 32KB (32Bytes× 256 lines× 4set), and the
size of MemoTbl CAM as 2MB (32Bytes× 64K lines).
The size of MemoBuf is equal to D1 cache, and the size of
MemoTbl is equal to D2 cache.

Table 1. Processor Parameters

D1 Cache 32 K Bytes
Line size 32 Bytes
Ways 4
Latency 2 cycles
Cache Miss Penalty 10 cycles
D2 Cache 2 M Bytes
Line size 32 Bytes
Ways 4
Latency 10 cycles
Cache Miss Penalty 100 cycles
Register Windows 4 sets
Window Miss Penalty 20 cycles/set
Load Latency 2 cycles
Integer Mult. 8 cycles
Integer Div. 70 cycles
Floating Add/Mult. 4 cycles
Single Div. 16 cycles
Double Div. 19 cycles
MemoBuf size 32 K Bytes
MemoTbl size 2 M Bytes

Table 2. GENEsYs Parameters

Mutation Probability 0.1 %
Crossover Probability 60.0 %
# of Crossover Points 2
Population Size 50
# of Trials per Experiment 1000
Other paramseters defaults

The on-chip CAM is modeled on MOSAID
DC18288[3]. We assume the latency for input matching
between CAM and the register as 32Byte/cycle, and the la-
tency between CAM and main memory as 32Byte/2cycle.

4.2 Genetic Algorithms

First, we evaluated our processor with no speculative cores
mentioned in Section 3. We used GENEsYs programs
which are compiled by gcc-3.0.1 with-msupersparc
-O2 options. GENEsYs is an implementation of genetic al-
gorithms based on Grefenstette’s GENESIS[4]. GENEsYs
provides 24 fitness functions, including De Jong’s func-
tions, TSP-problem, fractal function, and so on. The typical
GA parameters are shown in Table 2.

Figure 6 shows the result in the form of normalized
execution cycles. Each bar is normalized to the number
of executed cycles without memoization. Each workloads
are represented by two bars in this chart. The left bar
plots the clock cycles that the original GENEsYs workload
costs, and the right bar plots the clock cycles with auto-
memoization.

The legend shows the cycles for eight components
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Figure 6. Normalized execution time (GENEsYs)

of the GENEsYs workloads. They represent the cycles
for crossover operation (‘cross’), mutate operation (‘mu-
tate’), genotype format conversion (‘conv’), fitness cal-
culation (‘fitness’), genotype selection (‘select’), conver-
gence measurement (‘measure’), and other miscellaneous
processes such as variable initializations (‘misc’) respec-
tively.

As the bars clearly indicate, auto-memoization re-
duces up to 83% execution cycles. The average of reduced
cycles is 28%. Note that the workloads with high-load fit-
ness functions, such as f4 (Quartic function with noise),
f5 (Shekel’s foxholes), f13 (Weierstrass-Mandelbrot frac-
tal function), f16 and f17 (Fletcher and Powell), gain large
speedup. In other words, the fitness functions with higher
load tend to gain larger speedup by auto-memoization.
Auto-memoization gains over 2-fold speedup with these
high-load functions on average.

4.3 SPEC CPU95

Next, we evaluated our auto-memoization processor with
three speculative cores. Workloads are eleven bench-
marks in SPEC CPU95 suits and are executed with ‘train’
dataset. All benchmarks are compiled by gcc-3.0.1 with
-msupersparc -O2 options.

Figure 7 shows the result in the form of normalized
execution cycles. Each bar is normalized to the number of
executed cycles without memoization. Each benchmarks
are represented by three bars in this chart. The left bar plots
the baseline that the original benchmark costs. The center
bar plots the clock cycles using auto-memoization with no
speculative cores. The right bar plots the clock cycles using
auto-memoization and three speculative cores.

The legend shows the itemized statements of cycles.
They represent the executed instruction cycles (‘exec’), the
overhead for the comparison between MemoTbl and the
registers (‘test(r)’), the overhead for the comparison be-
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tween MemoTbl and the cache (‘test(m)’), the overhead
to write from MemoTbl to the registers/cache (‘write’), D1
cache miss penalty (‘D1$’), shared D2 cache miss penalty
(‘D2$’), and register window miss penalty (‘window’) re-
spectively.

The normal auto-memoization reduces up to 32% ex-
ecution cycles, and 13% cycles on average. With three
speculative cores, auto-memoization reduces up to 65% cy-
cles, and 27% cycles on average. Note that not only ‘exec’
but also ‘D2$’ is considerably reduced with speculative
cores for 124.m88ksim and 102.swim. This result shows
that parallel execution by speculative cores works also just
like pre-fetching for shared cache.

5 Related Work

A general-purpose reuse technique for single instructions
was proposed by Sodani[5]. Fully associative reuse buffer
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(RB) with maximum 1024 is assumed. Each entry holds
the operand values and the result of an instruction. The
mem-valid bit and the mem-address fields are maintained
to ensure a load instruction can be reused. On a store
the mem-address fields are associatively searched and the
mem-valid bits are reset. González[6] evaluated reuse trace
memory (RTM) with maximum 256K entries. Each en-
try is indexed by part of PC (e.g. 8-way set-associative
and 16 entries per PC) and is assumed to hold 8-in 8-out
register values and 4-in 4-out memory values. The maxi-
mum size of RTM is over 32MB. This work provides the
upper bounds achieved with an infinite reuse trace mem-
ory. Costa[7] proposed a reuse scheme which employs a
fully associative table that does not include load/store in-
struction. The program counter and the operand values are
associatively compared. This work approaches trace-level
reuse by providing an evaluation of a feasible reuse mech-
anism against [6].

Wu[8] proposed a SpMT using computation reuse and
value prediction. The compiler profiles the target programs
in advance, and insert specialreuseinstructions at the be-
ginning of memoizable regions. This scheme also predicts
the outputs of memoizable regions and execute the code af-
ter the regions speculatively. When the output prediction
proves to be incorrect, speculative execution needs back-
out. It achieves speedup in the range from 1.33- to 1.4-fold
with SPEC CPU95 benchmarks. On the other hand, our
auto-memoization processor achieves up to 2.9-fold and
1.4-fold speedup on average without special instructions,
profiling and recompilation. Molina[9] proposed a trace-
level speculative multithreaded architecture. The instruc-
tions executed by speculative threads are stored in FIFO.
The main thread fetches instruction from the FIFO, com-
pares source operands, and reuse the results when source
operands match. It achieves speedup up to 1.33-fold and
1.16-fold on average.

6 Conclusion

In this paper, we proposed a auto-memoization processor.
This processor dynamically detects the functions and loops
in the binary programs as memoizable instruction region,
and memoize them automatically. Memo table for storing
past inputs and outputs is implemented by general ternary
CAM. The superior point of the processor is that only the
comparison between current input values and recorded in-
put values is required and the verification of the results is
unnecessary. Moreover, the number of instructions in the
memoizable regions does not affect the complexity of the
memoization mechanism.

We also proposed additional speculative cores for the
auto-memoization processor. Parallel execution by these
multiple speculative cores can omit the execution of in-
struction regions even if whose inputs show monotonous
increase/decrease.

The performance evaluation results with GENEsYs
genetic algorithm programs prove the efficiency of auto-

memoization showing a large degree of speedup up to 7.1-,
and 1.6-fold on average. The experiment result with SPEC
CPU95 benchmarks shows that speculative cores push up
the maximum eliminated cycles from 32% to 65%. Fur-
thermore, parallel execution by speculative cores reduces
miss rates of shared data cache well.

Our future work is to evaluate the auto-memoization
on pipelined superscalar processor models. Other impor-
tant issues including further detailed investigation, hard-
ware cost estimation, energy-efficiency, and examination
of management algorithms for memo tables are also left
for future works.
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