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ABSTRACT 1. INTRODUCTION

The Distributed Constraint Optimization Problem (DCOP) isafun-  The Distributed Constraint Optimization Problem (DCOP) [2, 3,
damental formalism for multi-agent cooperation. A dedicated frame-4, 6] is a fundamental formalism for multi-agent cooperation in
work called Resource Constrained DCOP (RCDCOP) has recently distributed meeting scheduling, sensor networks and other applica-
been proposed. RCDCOP models objective functions and resourcetions including distributed problem solving.
constraints separately. A resource constraint is an n-ary constraint A dedicated framework called Resource Constrained DCOP (RCD-
that represents the limit on the number of resources of a given type COP) has been recently proposed [1, 5] . RCDCOP models ob-
available to agents. Previous research addressing RCDCOPs emjective functions and resource constraints separately. A resource
ploys the Adopt algorithm, which is a basic solver for DCOPs. constraint is an n-ary constraint that represents the limit on the
In this paper we propose another version of the Adopt algorithm number of resources of a given type available to agents. Multiply-
for RCDCOP using a pseudo-tree that is generated ignoring re- constrained DCOP is formalized in [1]. As an example domain,
source constraints. The key ideas of our work are as follows: (i) [1] describes the meeting scheduling problem with privacy require-
The pseudo-tree is generated ignoring resource constraints. (ii) Vir- ments. Resource constrained distributed task scheduling modeled
tual variables are introduced, representing the usage of resourcesas n-ary constrained DCOPs, and the algorithm to solve such prob-
These virtual variables are used to share resources among sublems, are presented in [5]. The previous research addressing RCD-
trees. These ideas are used to extend Adopt. The proposed metho§OPs employs the Adopt algorithm [4], which is a basic solver for
reduces the previous limitations in the construction of RCDCOP DCOPs. Animportant graph structure for Adopt is the pseudo-tree
pseudo-trees. The efficiency of our technique depends on the clasdor constraint networks. A pseudo-tree implies a partial ordering of
of problems being considered, and we describe the obtained expervariables. In this variable ordering, n-ary constrained variables are

imental results. placed on a single path of the tree. Therefore, resource constraints
that have large arity augment the depth of the pseudo-tree. This
Categories and Subject Descriptors also ret_aluces the parallelism, and therefore'the efficiency of Adopt.
In this paper, we propose another version of the Adopt algo-
1.2.11 [ARTIFICIAL INTELLIGENCE |: Distributed Avrtificial rithm for RCDCOP using a pseudo-tree that is generated ignoring
Intelligence resource constraints. The key ideas of our work are as follows: (i)
The pseudo-tree is generated ignoring resource constraints. (ii) Vir-
General Terms tual variables are introduced, representing the usage of resources.

These virtual variables are used to share resources among sub-

Algorithms trees. These ideas are used to extend Adopt. The proposed method

reduces the previous limitations in the construction of RCDCOP
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constraint reasoning, distributed constraint optimization problem, of problems being considered, and we describe the obtained exper-
resource constraint, multi-agent systems imental results.

2. PROBLEM DEFINITION: RESOURCE
CONSTRAINED DCOP (RCDCOP)
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Figure 1: Resource constrained DCOP Figure 2: Serializing of resource constrained variables

In RCDCOP resource constraints are added to DCOP. Resourceg|sp placed on a single path. If it is necessary to serialize variables,
constraints are defined by a getof resources and a sét of re- extra tree edges are inserted between nodes (e gz{) and @1,
source requirements. A resourcg € R has its capacity defined  z,) in Figure 2(a)). In the Adopt algorithnResource evaluation
by C(r.) : R — N. Each agent requires resources according nodes which evaluate resource constraints, are introduced. A re-
to its assignment. For assignment;, d;) and resource., a re- source evaluation node is added as a child node of the lowest node
source requirement is defined by(ra, d:) : R x D; — N. For of serialized nodes. For example, in Figure 2(b), extra nades
each resource, the total amount of requirement must not exceedandr; are added as child nodes @©f andx4 respectively. Each
its capacity. The global resource constraint is defined as follows: agent sends its value of variable to resource evaluation nodes using
Vr € R, cu, ((w.aipca ti(r,di) < C(r). Theresource con-  theVALUE message. Then the resource evaluation node evaluates
straint takes arbitral arity. An example of RCDCOP that consists of the total amount of resource requirement for its resource. If the
5 variables and 2 resources is shown Figure 1(a). In this example,resource constraint is not satisfied, the resource evaluation node
%o, r2 andxs are constrained by resourég. o, 1 andz4 are notifies its parent node using tfiEinity COST message. In this
constrained by resourde . approach, no modification of the Adopt algorithm is necessary ex-

cept adding resource evaluation nodes and handling infinity cost.
3. BACKGROUND : SOLVING RCDCOP US- However, large arity of resource constraint increases the depth of
ING ADOPT the tree, and reduces parallelism in search processing.

The Adopt[4] algorithm depends on a variable ordering defined

by a pseudo-tree. The edges of the original constraint network are4, SQOLVING RCDCOP WITH RESOURCE
categorized into tree edges and back edges of the pseudo-tree. The CONSTRAINT FREE PSEUDO-TREE

tree edges represent the partial order relation between two vari- i - )
ables. There is no edge between different subtrees. By employing ' this work, we propose a novel version of the Adopt algorithm
this property, Adopt performs search processing in parallel. for RCDCOP. The proposed algorithm allows resource constraints

The processing of Adopt consists of two phases as follows. (i) _relate_d to nodes in different subtrees. The pseudo-tree is generated
Computation of global optimal cost: Each node computes the ignoring resource constraints. For example, the pseudo-Free_shown
boundary of the global optimal cost according to the pseudo-tree. in Figure 1(b) is generated from the RCDCOP shown in Figure
(i) Termination: After computation of global optimal cost, the ~ 1(&). In this example, there is a constraint edge,dbetween two
boundary of the cost is converged to the optimal value in the root different subtrees, which contain andz; respectively. Similarly,
node. Then the optimal solution is decided according to the pseudo-there is a constraint edge of betweenz: andz.
tree in a top-down manner. . . .

Details of the Adopt algorithm are shown in [4]. In this pa- 4.1 Introduction of virtual variables
per, important modifications for Adopt are applied to computa-  The main idea of the proposed method is the introduction of
tion of the global optimal cost. Agent computes the cost us-  virtual variables, which represent usage of resources. Each node
ing information as follows. (1),: variable of ageni. Valued; shares resources with its parent node and child nodes using the
of x; is sent to lower neighbor nodes of using VALUE mes- virtual variables. Virtual variabler, ; is defined for resource,
sage. (2xurrent_context;: current partial solution of ancestor and noder;, which requires resource, in the subtree routed at
nodes ofz;. current_context; is updated byVALUE message x;. vre,; IS owned by the parent node of. vr, ; takes a value

and context of COST messages. (Jontext;(z,d), Ibi(z,d);, from its discrete domaif0, 1,--- ,C(rq)}. As a simple exam-
ub;(x,d): boundary of optimal cost for each valdeof variable ple, a pseudo-tree, which is related to single resource constraint,
x; and subtree routed at child nodeThese elements are received is shown in Figure 3. In this example, resourngeis related to

from child nodex usingCOST message. lfurrent_context; in- variableszg, =1, 2 andxs. For these resources and variables,
cludescontext; (z, d), upper and lower bounds of cost &bg(x, d) virtual variablesvro 1, vro,2 andwvrg s are introduced. Each vir-
andub; (z, d) respectively. Ifcurrent_context; is incompatible tual variablevr, ; is owned by the parent node of. The value

with context;(z, d), context;(x,d), lb;(z,d); andub;(x, d) are of vre,; is controlled by the parent node. Note that root nade
reset to{}, 0 and oo respectively. (4)UB;(d), LB;(d): upper does not have a parent node. Therefore, it is assumed that the value
bound and lower bound of cost for valdeof variablex; and the of vrg o is given from the virtual parent node. In this casey o
subtree routed at;. They are computed using cost information. takes a constant value that is equal to capa€ifyo) of resource

In previous work[5], a version of the Adopt algorithm, which  rq. Valuedr, ; of virtual variablevr,,;, which is owned by agent
serializes resource constrained variables, is proposed. For exams4, is sent tai’s child nodej using theVALUE message. Therefore,
ple, the pseudo-tree shown in Figure 2(a) is generated from thethe VALUE message is modified to cont&in;, d;) and additional
RCDCOP shown in Figure 1(a). In this examplg, =2 andzs, assignmentur,, ;, drq,;). When nodej receives th&/ALUE that
which are related to resoureg, are placed on a single path of a  containg(vr,_;, dre,;), nodej updates itgurrent_context,; with
pseudo-treex,, z1 andz4, which are related to resoureg, are new (vrq, ;,dra,;). In nodei, assignments of virtual variables for



Algorithm 1: Generate virtual variables

Initiation; {

Generate pseudetree ignoring resource constraint.

if(¢ is not root node)p; < parent node of node

C; «— aset of child nodes of node

R, < aset of resources required by nade

if (¢ is root node ){ call Rootward). call Leafward (¢). } }
Rootward (){

R, «— R;.

for eachy in C;{ call Rootward; () and receiveR;. R; — R, U R;. 1}
11 Leafward(Rz'i){

O VW oOoO~NOOU~WNE

(a) pseudo-tree (b) virtua variables
Figure 3: Virtual variables for resource constraint

=

resourcer, should satisfy a constraint, ; as follows.

12 Rf —¢.
13 foreachrin R, {
Cayit drai > ui(ra,di) + Z dra,; (1) 14  n <« numberofnodeg st.r € R} .
jeiﬁﬁﬁf??‘éiﬁfﬁé . 15 if(n>2o0r(n=1and ¢ € R; orreR;ji))){ RI — R u{r}.}}

16 for eachy in C;{

Heredr,,; denotes the value afr, ;, which is received from the 17  foreachrin R} {if(r is contained inR;") X; — X; U {vr, ;}.}
parent node of. The assignmentvr, ;,dr,:) iS contained in 18  call Leafwarg(R;).}}

current_context;. If an assignment does not satisfy the resource
constraintc,,;, the violation of the resource constraint is repre-
sented by infinity cost. Each nodevaluates the boundary of opti-
mal cost forcurrent_context;. Then the cost information is sent
to the parent node afusing theCOST message. The context of

signment isco. A violation of a resource constraint does not de-
pend on evaluation of other resource constraints. If an assignment

the COST message is modified to contain additional assignment wolgtes a resource constraint foy, the aSS|_gnment IS a \_/lolated
assignment even if other resource constraints are satisfied. There-

for virtual variables of’s parent node. ) .
fore, the assignment is pruned.

In a general case, variables are related to one or more resources. The memorv soace for nodis child node1 increases exponen
Moreover, variables are related to a subset of whole resources. Vir- . . ysp . . J EXp
tially with the number of virtual variables that are containediry.

tual variables are generated according to rules as follows. . . S . .
(1) Basically, if a subtree routed at nods child node;j requires However, in the Adopt algorithm, default initial cost information
. is used when the cost information has not been received from the

resourcer, then node owns virtual variablar, ;. However, the child nodes. Therefore, it is unnecessary to store the cost informa
following cases are prioritized as special cases. . : A y
tion that takes the initial value.

(2) If nodei or multiple subtrees routed &t child nodes require

rq, thencurrent_context; contains assignment{, ;, drq ;). In 4.3 Correctness Of the a|gorithm

this caseyr,.. is decided as follows. (i) If na's ancestor node The proposed method uses additional virtual variables. This
requiresr,, theni is the root node for,. In this casedr, ; is '€ prop . :
L A modification straightforwardly extends Adopt. In each node, the
initialized as a constant that takes a value equal to capéXity) . . . ) . )

- - ., original variable and virtual variables can be considered as one in-
of r. (i) If node: is not the root node far,, theni's parent node tegrated variable. The cost evaluation and invariants for the inte-
h owns virtual variabler, ;. ThereforeVALUE messages, which 9 ; : - o

J grated variable are the same as the original definition of Adopt.

are received fronk, contain assignmenivra, i, dra,:). s S
(3) If nodei requires resource, and no subtree routed & child Therefore, the optimality, soundness and termination are the same

node requires., theni is aleaf node forr,. In this case, nodée as Adopt.

has no virtual variables for,. Therefore, the resource constraint is

defined bydra; > wi(ra, d;). 5. EVALUATION

(4) If multiple subtrees routed ats child nodesj € A’ require The efficiency of the proposed method is evaluated by experi-

T4, theni must share, among child nodeg € A’, even if node ments. As initial experiments, we use a modified graph coloring

+ does not require,. Therefore, node owns virtual variables problem with three colors. The problems are generated using pa-
{vra,lj € A’} rametergn, d,r, c,[,u). The number of nodes and link density

An algorithm to generate virtual variables is shown in Algorithm  d are the basic parameters of the graph coloring problem. The link
1. For the sake of simplicity, the algorithm consists of two phases densityd is set to 1 or 2. In original graph coloring problems, this

of processing. As aresult, nodgenerates set; of own variables. setting of parameters is used to generate a low constrained problem.
However, the problem contains additional resource constraints as
4.2 Growth of search space follows. Parameter, ¢, I determines number of resources, capac-
Additional virtual variables increase the search space. Node ity of a resource, and arity of a resource constraint respectively. In
selects an assignment for a set of variables= {x; } U{vr. ;|j € this problem setting, each variable is related to at least one resource

Children;,ro € R;}. HereR; denotes a subset of resources that constraint. For the sake of simplicity, the usage of a resource, which
are required in the subtree routed at ngdeCost evaluations in is required by an agent, is limited to 0 or 1.This means that each

nodei are modified td; (D;), LB;(D;) andU B;(D;) respectively. agent requires a unit amount of a resource or does not require one
HereD; denotes a total set of assignments Agr Moreover, cost at all. Parametet represents the ratio of a variable’s values that
information of node’s child nodej is evaluated fo®t; ; = {z;} U require a resource. In these experimenis set to%. Capacityc of
{vra,jlra € R;}. Therefore, they are modified t;(j, D;,;), aresource is set tb} ]. Each problem instances generated so that

ubi (4, Di,5), ti(4, Di,;) andcontext;(j, D; ;) respectively. As a at least one assignment globally satisfies resource constraint. 10

result of these modifications, the size of the search space increasefstances for each setting are averaged. As a competitive method,

exponentially with the number of virtual variables. Adopt using local serialization of resource constrained variables, is
If an assignment does not satisfy Equation 1, the cost of the as-also applied. Each experiment is terminated at 9999 cycles . In that
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Figure 4: Message cycles

Table 1: Size of pseudo-trees and dimension of assignments

n|dfr [§ | Depth of Branching max. dim. | num. of | max. total execution time (s)
pseudo tree factor of assign- | infinity num. of (Itanium2 1.6GHz
ment cost costinfo. | 32GB Memory/C++)
w. Local | w. Virtual | w. Local | w. Virtual w. Virtual w. Local | w. Virtual
Serialize | Variables | Serialize | Variables Variables Serialize | Variables
10|11 5 10 10.0 4.3 1.0 2.7 5.3 0 17.4 0.004 0.020
2 3 5 7.1 4.3 11 2.7 6.5 0 19.3 0.001 0.055
4 2 3 6.4 4.3 1.4 2.7 8.6 3.0 22.3 0.001 0.257
211 5 10 10.0 6.8 1.0 1.5 3.6 0 60.8 0.033 0.132
2 3 5 8.4 6.8 1.1 1.5 4.7 0 815 0.007 0.538
4 2 3 7.7 6.8 1.3 1.5 6.2 176.5 116.3 0.007 2.637
2011 10 20 20.0 53 1.0 35 9.6 0 50.3 0.507 32.524
2 5 10 13.8 5.3 11 35 10.9 0 65.8 0.011 47.405
4 3 5 10.8 5.3 1.2 3.5 13.0 0 71.1 0.002 334.243
211 10 20 20.0 11.2 1.0 1.5 3.7 0 176.9 1.089 5.656
2 5 10 17.3 11.2 1.1 1.5 51 0 3235 0.192 57.735
4 3 5 15.2 11.2 1.2 1.5 6.8 0 559.4 0.073 490.274

case, the cycle is considered as total number of message cyclesby a large number of agents and few shared resource constraints

The results are shown in Figure 4 and Table 1. In these results theAnalysis of pseudo-trees to improves the efficiency of the proposed

incorrectly terminated instances are taken into account. method, better representation of boundaries to prune the search pro-
In the case of = 1, message cycles of the competitive method cessing, will be included in future work.

are greater than the proposed methods. In this case, the compet-
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