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ABSTRACT
In this paper, we propose a Quantified Distributed Constraint Op-
timization problem (QDCOP) that extends the framework of Dis-
tributed Constraint Optimization problems (DCOPs). DCOPs have
been studied as a fundamental model of multi-agent cooperation.
In traditional DCOPs, all agents cooperate to optimize the sum of
their cost functions. However, in practical systems some agents
may desire to select the value of their variables without coopera-
tion. In special cases, such agents may take the values with the
worst impact on the quality of the result reachable by the optimiza-
tion process. We apply existential/universal quantifiers to distinct
uncooperative variables. A universally quantified variable is left
unassigned by the optimization as the result has to hold when it
takes any value from its domain, while an existentially quantified
variable takes exactly one of its values for each context. Simi-
lar classes of problems have recently been studied as (Distributed)
Quantified Constraint Problems, where the variables of the CSP
have quantifiers. All constraints should be satisfied independently
of the value taken by universal variables. We propose a QDCOP
that applies the concept of game tree search to DCOP. If the origi-
nal problem is a minimization problem, agents that own universally
quantified variables may intend to maximize the cost value in the
worst case. Other agents normally intend to optimize the mini-
mizing problems. Therefore, only the bounds, especially the upper
bounds, of the optimal value are guaranteed. The purpose of the
new class of problems is to compute such bounds, as well as to
compute sub-optimal solutions. For the QDCOP, we also propose
several methods that are based on min-max/alpha-beta and ADOPT
algorithms.
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1. INTRODUCTION
Distributed Constraint Optimization problems (DCOPs) have been

studied as a fundamental model of multi-agent cooperation [9, 11,
12, 14, 15, 16]. With DCOPs, a multi-agent system is represented
as a discrete optimization problem distributed among agents. The
decisions to be made by agents are modeled as variables. Relation-
ships between agents are represented by cost functions. Distributed
search algorithms are employed to compute a solution that glob-
ally optimizes the aggregated value of these functions. Distributed
meeting scheduling, resource allocation in power plants and coor-
dination in sensor networks are modeled as DCOPs [5, 7, 8].

In traditional DCOPs, all agents cooperate to optimize the sum
of their cost functions. However, in practical systems some agents
may desire to select the value of their variables without coopera-
tion. One motivating domain is a contingency planning problem in
a smart grid system, which contains provider nodes and consumer
nodes. The provider nodes try to find a robust plan that can han-
dle any requests from consumers. Another domain is a surveillance
problem by multiple sensors/cameras. These sensors/cameras try to
find a surveillance plan against an intruder. In special cases, such
agents may take the values with the worst impact on the quality of
the result reachable by the optimization process. We apply exis-
tential/universal quantifiers to distinct uncooperative variables. A
universally quantified variable is left unassigned by the optimiza-
tion as the result has to hold when it takes any value from its do-
main, while an existentially quantified variable takes exactly one
of its values for each context. Similar classes of problems have
recently been studied as (Distributed) Quantified Constraint Prob-
lems (QCSP, QDCSP)[4, 2], where the variables of the CSP have
quantifiers. All constraints should be satisfied independently of the
value taken by universal variables. In [2], an extension of the asyn-
chronous backtracking search algorithm has been proposed.

A natural extension from DCOP to QDCOP is to introduce the
concept of game tree search. For example, if the original prob-
lem is a minimization problem, agents that own universally quanti-
fied variables may intend to maximize the cost value (in the worst
case). Other agents normally intend to optimize the minimizing
problems. Therefore, only the bounds, especially upper bounds, of
the optimal value are guaranteed. The purpose of the new class of
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problems is to compute such bounds, as well as to compute sub-
optimal solutions. For the QDCOP, we also propose several meth-
ods that are based on min-max/alpha-beta and ADOPT algorithms.
We show how the pseudo-tree-based DCOP algorithms are gener-
alized into game tree search algorithms. The performance of the
proposed methods is evaluated experimentally.

The outline of the paper is as follows. In Section 2, problem def-
initions including DCOP, QCSP, QDCSP and QDCOP are shown.
Then we propose several algorithms for QDCOP in Section 3. The
proposed methods are evaluated experimentally in Section 4. In
Section 5, related works are considered. We present our conclusion
in Section 6.

2. PROBLEM DEFINITIONS
In this section, conventional problem definitions including usual

DCOP and Quantified CSP/DCSP are shown. Then we define a
Quantified DCOP.

2.1 DCOP
A distributed constraint optimization problem (DCOP) is defined

by (A, X, D, C, F ) whereA is a set of agents,X is a set of vari-
ables,D is a set of domains,C is a set of binary constraints,
andF is a set of binary functions. Agenti has its own variable
xi ∈ X. xi takes a value from discrete finite domainDi ∈ D.
The value ofxi is controlled by agenti. Constraintci,j ∈ C rep-
resents the relationship betweenxi andxj . The cost of an assign-
ment{(xi, di), (xj , dj)} is defined by a binary functionfi,j ∈ F
such thatfi,j(di, dj) : Di × Dj → N. The goal is to find a
global optimal solutionA that minimizes the global cost function:
P

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj). In this paper, to simplify
notations, we may not strictly distinguish each agent from its vari-
able.

2.2 QCSP/QDCSP
The Quantified Constraint Satisfaction problem (QCSP)[4] is an

extension of classical CSP. The classical CSP is defined by(X, D,
C) whereX is a set of variables,D is a set of domains, andC
is a set of constraints.xi takes a value from domainDi ∈ D. A
solution of CSP is a set of assignment{(x0, d0), · · · , (xn, dn)}
that satisfies all constraints inC. In addition to the definition of
the classical CSP, QCSP defines a sequence of quantified variables.
A QCSP has the formQ.C = q0x0 · · · qnxn.C. Q is a sequence
of variables whereqi is the existential quantifier∃ or the univer-
sal quantifier∀. The semantics of a QCSPQ.C is recursively de-
fined as follows. IfC is empty,Q.C is true. If Q is of the form
∃x0q1x1 · · · qnxn, thenQ.C is true iff there exists a valued ∈ D0

such thatq1x1 · · · qnxn.(C∪{x0 = d}) is true. IfQ is of the form
∀x0q1x1 · · · qnxn, thenQ.C is true iff q1x1 · · · qnxn.(C ∪ {x0 =
d}) is true for all valuesd ∈ D0. Otherwise,Q.C is false.

In a Quantified Distributed CSP(QDCSP)[2], the variables are
distributed among agents. In [2], an extension of the asynchronous
backtracking search algorithm has been proposed.
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Figure 2: message paths of ADOPT

2.3 QDCOP
The class of Quantified DCOPs (QDCOPs) is introduced based

on that of a DCOP. In addition to definition of the DCOP, QDCOP
defines a sequence of quantified variables similarly to QCSP/QD-
CSP. A QDCOP has the formQ.(C, F ) = q0x0 · · · qnxn.(C, F ).
Q is a sequence of variables whereqi is the existential quantifier
∃ or the universal quantifier∀. Basically, the goal of QDCOP is
to find a global optimal (minimal) solution in the corresponding
DCOP. However, its semantics is modified due to quantifiers. Exis-
tentially quantified variables are usual variables. On the other hand,
universally quantified variables can take any values. Therefore, its
optimal solution is different from that of the DCOP. A QDCOP de-
fines boundaries of the optimal cost value, while a DCOP defines a
unique optimal cost value. The usual optimal cost is now the cost
of the best case. Therefore, the best case defines the lower bound.
In the worst case, universally quantified variables take values that
increase costs as possible. Therefore, the worst case defines the up-
per bound. This class of problem is similar to the problem in game
tree search [13]. We focus on the worst case problem as a QD-
COP. While any solutions between the best and the worst cases can
be chosen, we believe that the worst cost is informative in most of
the practical problems. We assume there exists a virtual agent for
each universally quantified variable, who imitates the adversary’s
actions but cooperates in searching for the bound with its team of
cooperative agents, i.e., they are calculating the boundoff-line.

3. SEARCH ALGORITHMS FOR QDCOP

3.1 Modified pseudo-tree
A pseudo-tree [12] is a graph structure that defines a partial or-

der on variables. The pseudo-tree contains a spanning tree of the
constraint network. For example, the pseudo-tree in Figure 1 (b) is
generated from the constraint network in Figure 1 (a). The edges of
the original constraint network are categorized into either the tree
or the back edges of the pseudo-tree. The tree edges represent the
partial order relation between the two variables. We use some nota-
tions to represent agents related to agenti. Let Chldi, Dcndi and
parenti denote child nodes, descendant nodes, and a parent node
respectively. AndPPi represents a subset of ancestor agents whose
variables are directly related to other variables of several agents in
the subtree rooted ati. There are no back edges between different
sub-trees. Therefore, a divide-and-conquer strategy can be applied
to the search processing for different sub-trees. By employing this
property, search processing can be performed in parallel.

A typical pseudo-tree is based on a depth first search (DFS) tree
on a constraint network. The DFS tree is generated in a top down
manner from a root variable node. However, in the case of QD-
COPs, the order of variables cannot be easily changed. Otherwise,
quantifiers are evaluated in the wrong order. Therefore, the pseudo-
tree must be modified to keep the ordering. This modification is ap-
plied by inserting an extranull edge for each pair of a parent and a
child if the edge is necessary. A simple method for generating such
a modified pseudo-tree is a well known bottom up computation as
follows. In the initial state, agenti knows setNbri of neighbor-



hood nodes and the order relationship of agents. ThenNbri is
immediately separated intoNbru

i andNbrl
i which represent upper

and lower neighborhood nodes respectively.Chldi, Dcndi, PPi

andparenti are recursively computed using the following equa-
tions.

Chldi = {j|parentj = i} (1)

Dcndi = Chldi ∪
[

j∈Chldi

Dcndj (2)

PPi = Nbrsu
i ∪

[

j∈Chldi

(PPj\{i}) (3)

parenti =

ȷ

lowestj ∈ PPi Nbrsl
i ⊆ Dcndi

undefined otherwise
(4)

If i is a leaf node,PPi andparenti are immediately computed
becauseNbrsl

i is an empty set. Note thatChldi is an empty
set because no agent’s parent is decided yet. ThereforeDcndi is
also an empty set. Also,PPi equalsNbrsu

i . We consider that
Nbrsl

i ⊆ Dcndi in Equation 4 is true if both sets are empty. This
computation eventually converges. Ifi is the root node, the final
value ofparenti is considered as anemptyvalue becausePPi is
an empty set. In actual distributed algorithms, each agenti sends
(Chldi, Dcndi, PPi, parenti) to parenti whenparenti is de-
cided. An example of a modified pseudo-tree is shown in Fig-
ure 1 (c).

We first decide a total order on agents, so that the total order sat-
isfies a partial order that is specified in the sequence of quantifiers.
For a given total order, we can uniquely create a pseudo-tree by
adding some null-edges if necessary. Due to the existence of the
predefined partial order, the choice of total orders is rather limited.

3.2 Computation of cost value and solution
Cost values are computed according to pseudo-trees. The com-

putation is based on ADOPT [11], except that several agents make
choices contrary to the optimization goal. We assume that each
agent knows the values of the variables and the cost functions of
other agents that share constraints with the agent. Basically, agent
i’s computation is based on the partial solutionsi of PPi. si is
calledcontext. s ≈ s′ represents compatibility, and is defined as :

s ≈ s′ , ∀(d, d′) s.t. (x, d) ∈ s ∧ (x, d′) ∈ s′, d = d′ (5)

The aggregation of costs in agenti is shown as follows. The local
costδi(si, d) for valued of variablexi and contextsi is defined as:

δi(si, d) =
X

(xj ,dj)∈si, j∈Nbru
i

fi,j(d, dj) (6)

The local optimal cost for valued of variablexi, contextsi and the
sub-tree routed atxi are recursively defined as:

g∗
i (si) =

ȷ

mind∈Di gi(si, d) qi = ∃
maxd∈Di gi(si, d) qi = ∀ (7)

gi(si, d) = δi(si, d) +
X

j∈Chldi

g∗
j (sj) s.t. (xi, d) ∈ sj , sj ≈ si (8)

Note that the calculation ofg∗
i (si) depends on the quantifierqi of

variablexi. For existentially quantified variables, the cost values
are minimized as with usual optimization. On the other hand, to
compute the worst case values, cost values are maximized for uni-
versally quantified variables.

In actual computation, some cost values may be yet unknown. In
such cases, upper and lower limit values are used as default values.
In this work, we use0 and∞ as lower and upper limits respectively.

Figure 3: min-max ADOPT

1 Main(){
2 Initialize().
3 until(forever){
4 until(receive loop is broken){
5 if (¬trmi){ receive messages. }else{ purge messages. }}
6 if (¬((waiting initial si)∨trmi)){ Maintenance(). }}
7 }
8 Initialize(){
9 di ← d ∈ Di. si ← ϕ. trmi ←false.ptrmi ←false.

10 foreachd ∈ Di, j ∈ Chldi{ ( sd,j , lbd,j , ubd,j)←(ϕ, 0, ∞). }
11 if (i is root){ trmi ←true. Maintenance(). }
12 }
13 Receive(VALUE,j, s, ptrm){
14 updatesi usings.
15 ensure child_cost_consistency.
16 if (s is not old){
17 if (j = parenti){ ptrmi ← ptrm. }}
18 }
19 Receive(COST,j, s, lb, ub){
20 d ← d′ s.t. (xi, d

′) ∈ s. s ← s\{(xi, d
′)}.

21 updatesi usings.
22 ensure child_cost_consistency.
23 if (s is not old){
24 update (sd,j , lbd,j , ubd,j) using(s, lb, ub). }
25 }
26 Maintenance(){
27 if (ptrmi ∧ lb∗i = ub∗i ){
28 if (qi = ∃){ di ← d s.t.ubi(d) = lb∗i . }
29 else{ di ← d s.t. lbi(d) = ub∗i . }
30 trmi ←true.
31 }else if(lbi(di) = ubi(di)){
32 di ← d s.t. lbi(d) ̸= ubi(d) if suchd exists. }
33 foreach j ∈ Chldi{
34 send (VALUE,i, si ∪ {(xi, di)}, trmi) to j. }
35 foreach j ∈ Nbrl

i\Chldi{
36 send (VALUE,i, {(xi, di)}, ϕ) to j. }
37 send (COST,i, si, lb∗i , ub∗i ) to parenti.
38 }

These default values separate a cost value into upper and lower
bound values. Once a globally optimal costg∗

r (ϕ) is computed for
the root variablexr, a sub-optimal solution can be computed in a
top down manner.

3.3 min-max ADOPT
Pseudo-tree based distributed search algorithms can be naturally

extended to address QDCOPs. First, we describe the min-max AD-
OPT algorithm as a basic scheme. As shown in Figure 2, the algo-
rithm works using two types of messages. The VALUE messages
announce the value of variables. In addition to the top down path
of tree edges, short cut paths of back edges are also used. The short
cut messages can contain only the assignments of source agents.
The COST messages announce cost values.

Received values are locally stored in each agenti. Therefore,
contextsi now denotes the newest copy of the assignments of the
ancestors. Since ADOPT is a memory-bounded algorithm, only
the current partial solution is referred to in cost computations. By
lbd,j we denote a copy of the lower bound value ofg∗

j (sj) such
that (xi, d) ∈ sj wherej is a child agent ofi. Similarly, ubd,j

denotes the upper bound.lbi(d) andubi(d) denote lower and upper
bounds ofgi(si, d). Furthermore,lb∗i andub∗i denote boundaries
of g∗

i (si) respectively.lbd,j andubd,j are maintained with related
contextsd,j . The initial values of (sd,j , lbd,j , ubd,j) are (ϕ, 0, ∞).
They are updated using received cost values and the related context.
Whensi ̸≈ sd,j , (sd,j , lbd,j , ubd,j) are reset to initial values.

The pseudo code of min-max ADOPT is shown in Figure 3. In
addition to notations shown above, several notations are used.di



denotes the current assignment ofxi. For the termination sequence,
ptrmi and trmi are used. They specify whetherparenti and i
have been terminated or not. In the pseudo codes, we implicitly
use the vector of logical time. Each logical time is associated with
a variable’s value. When the value is changed, its logical time is
increased. It is necessary to decide the newest value in updating
contexts. Cost values that are computed for obsolete variables’ val-
ues are reset to initial values. The removal of the vector clock is
not addressed in this paper. In the algorithm, the following invari-
ant and update operations are used.

child_cost_consistency:For eachd ∈ Di andj ∈ Chldi, sd,j ≈
si must hold. If they are different, (sd,j , lbd,j , ubd,j) are reset to
their initial value (ϕ, 0, ∞).

update si using s: For each(x, d) and(x, d′) such that(x, d) ∈
si ∧ (x, d′) ∈ s, if the logical time of d’ is newer than d,(x, d)
is replaced by(x, d′). For each(x, d′) such that(x, d′) /∈ si ∧
(x, d′) ∈ s, (x, d′) is appended tosi.

update (sd,j , lbd,j , ubd,j) using(s, lb, ub): sd,j is updated bys.
lbd,j is updated bylb if lb > lbd,j . ubd,j is updated byub if ub <
ubd,j .

The outline of the processing is as follows. The processing is
initiated by the root agent’s VALUE messages. When each agent
i receives messages, its contextsi is updated. Then consistencies
of (sd,j , lbd,j , ubd,j) are maintained. Their values are reset if nec-
essary. (sd,j , lbd,j , ubd,j) andptrmi are also updated according
to the types of messages. After receiving messages, agenti com-
putes its new state. Ifparenti has been already terminated and
lb∗i = ub∗i , i selects its optimal value ofxi and terminates. Oth-
erwise,i selectsxi’s value to search the rest of the solution space.
Finally, all agents terminate and the system reaches quiescence.
While it may be possible to select a more desirable solution in the
termination sequence, we prefer the solution on the upper bounds
of optimal cost in the minimizing problem.

This algorithm is clearly a simplified version of the original AD-
OPT. There are no major pruning methods such asbacktracking
thresholds. Additionally, there are opportunities to remove several
redundancies of the algorithm. If a new message is scheduled to
carry exactly the same information as a previous message, the new
message is not necessary. In particular, in the case of the min-
max method, each agent only depends on the assignments ofPPi.
Therefore, the contexts of VALUE messages can be reduced to it.
It reduces extra flipping of variables’ values. In our implementa-
tion, redundant messages are partially limited, and we minimize
the context of VALUE messages.

3.4 alpha-beta ADOPT
The alpha-beta method is a fundamental pruning method for game

tree search [13]. This method employs two boundary parameters,
alpha and beta, that represent the lower bound and upper bound of
possible cost values. Alpha represents the lower bound, controlled
by the maximizing player, and beta represents the upper bound con-
trolled by the minimizing players. Neither player can modify a type
of boundary other than the one given by its type. In QDCOP, each
agent performs either as a minimizing or as a maximizing player.
The pruning is driven in a top down manner. When an agent reports
the cost value of the current partial solution, its parent agent nar-
rows alpha/beta according to the cost value. Then the new alpha/
beta value is used to prune the child agent’s search. This pruning
can be applied to pseudo-tree based min-max ADOPT. Alpha/beta
values are managed using a technique similar to thebacktracking
thresholdin the original ADOPT.

In the alpha-beta ADOPT, an agenti employs several values for

Figure 4: alpha-beta ADOPT

1 Initialize(){
2 di ← d ∈ Di. si ← ϕ. rlvli ← 0. trmi ←false.
3 ptrmi ←false. (sαβ

i , rlvlαβ
i , αi, βi)←(si, rlvli, 0, ∞).

4 foreachd ∈ Di, j ∈ Chldi{
5 (sd,j , rlvld,j , lbd,j , ubd,j , lbαβ

d,j , ubαβ
d,j , αd,j , βd,j)

6 ←(si, rlvli, 0, ∞, 0, ∞, 0, ∞). }
7 if (i is root){ trmi ←true. Maintenance(). }
8 }
9 Receive(VALUE,j, s, rlvl, α, β, ptrm){

10 update (si, rlvli) using (s, rlvl).
11 ensure alpha_beta_consistency and child_cost_consistency.
12 ensure child_alpha_beta_invariant.
13 if (s andrlvl are not old){
14 if (j = parenti){
15 update (sαβ

i , rlvlαβ
i , αi, βi) using (s, rlvl, α, β).

16 ensure child_alpha_beta_invariant.ptrmi ← ptrm. }}
17 }
18 Receive(COST,j, s, rlvl, lb, ub, lbαβ , ubαβ){
19 d ← d′ s.t. (xi, d

′) ∈ s. s ← s\{(xi, d
′)}.

20 update (si, rlvli) using (s, rlvl).
21 ensure alpha_beta_consistency and child_cost_consistency.
22 ensure child_alpha_beta_invariant.
23 if (s andrlvl are not old){
24 update (sd,j , rlvld,j , lbd,j , ubd,j , lbαβ

d,j , ubαβ
d,j) using

25 (s, rlvl, lb, ub, lbαβ , ubαβ). }
26 }
27 Maintenance(){
28 ensure alpha_beta_invariant.
29 ensure child_alpha_beta_invariant.
30 if (ptrmi ∧ qi = ∃ ∧ ub∗i = αi){
31 di ← d s.t.ubi(d) = αi. trmi ←true.
32 }else if(ptrmi ∧ qi = ∀ ∧ lb∗i = βi){
33 di ← d s.t. lbi(d) = βi. trmi ←true.
34 }else if(ptrmi ∧ rlvli < i){
35 α′ ← αi. β′ ← βi. rlvli ← i.
36 ensure alpha_beta_consistency.
37 if (qi = ∃){ αi ← α′. }else{ βi ← β′. }
38 ensure child_cost_consistency.
39 ensure alpha_beta_invariant.
40 ensure child_alpha_beta_invariant.
41 }else if(lbαβ∗−

i ̸= ubαβ∗−
i ∧ lbαβ

i (di) = ubαβ
i (di)){

42 di ← d s.t. lbαβ
i (d) ̸= ubαβ

i (d) if suchd exists. }
43 foreach j ∈ Chldi{
44 send (VALUE,i, si ∪ {(xi, di)}, rlvli, αdi,j , βdi,j , trmi)
45 toj. }
46 foreach j ∈ Nbrl

i\Chldi{
47 send (VALUE,i, {(xi, di)}, rlvli, ϕ, ϕ, ϕ) to j. }
48 send (COST,i, si, rlvli, lb∗i , ub∗i , lbαβ∗−

i , ubαβ∗−
i )

49 toparenti.
50 }

the alpha-beta method.αi andβi represent the alpha and beta of
i. lbαβ

d,j , ubαβ
d,j , lbαβ

i (d), ubαβ
j (d), lbαβ∗

i and ubαβ∗
j are similar

to lbd,j , ubd,j , lbi(d), ubi(d), lb∗i andub∗i respectively. Because
the alpha-beta method often computes cost values that exceed true
boundaries, we separate these cost values from the true cost val-
ues. Additionally,lbαβ∗−

i andubαβ∗−
j are introduced for restricted

values oflbαβ∗
i andubαβ∗

j . lbαβ∗−
i andubαβ∗−

j are defined as fol-
lows.

lbαβ∗−
i = min(max(lbαβ∗

i , αi), βi) (9)

ubαβ∗−
i = min(max(lbαβ∗

i , αi), βi) (10)

The alpha/beta values are shared betweeni and its child agents.
αd,j andβd,j represent the shared value for child agentj in the
case ofxi = d.

In addition to the implicit vector clock for the values of vari-



ables, a logical time,root level, is introduced. The logical time is
used to detect whether search is reset in the termination sequence.
The necessity of the reset will be discussed below.rlvli repre-
sentsi’s current newest root level. Consistency of context and root
level are maintained for alpha, beta and cost values.αi andβi are
maintained with related contextsαβ

i andrlvlαβ
i . lbd,j , ubd,j , lbαβ

d,j ,

ubαβ
d,j , αd,j andβd,j are maintained with the related contextsd,j

andrlvld,j . In our algorithm we use the following invariants and
update operations.

alpha_beta_consistency:sαβ
i andrlvlαβ

i must be equal tosi and
rlvli respectively. If they are different, (sαβ

i , rlvlαβ
i , αi, βi) are

reset to their initial value (si, rlvli, 0, ∞).
child_cost_consistency:For eachd ∈ Di andj ∈ Chldi, sd,j

andrlvld,j must be equal tosi andrlvli respectively. If they are
different, (sd,j , rlvld,j , lbd,j , ubd,j , lbαβ

d,j , ubαβ
d,j , αd,j , βd,j) are

reset to their initial value (si, rlvli, 0, ∞, 0, ∞, 0, ∞).
alpha_beta_invariant: αi and βi must take the best upper and

lower bounds of cost values respectively. That is achieved as
follows. First,lbαβ∗

i andubαβ∗
i are calculated as shown in equa-

tions 7 and 8. Then,lbαβ∗−
i andubαβ∗−

i are calculated as shown
in equations 9 and 10. If agenti has an existentially quantified
variable,βi is updated bymin(βi, ubαβ∗−

i ). Otherwise,αi is
updated bymax(αi, lb

αβ∗−
i ). Additionally, in the root agent,

the opposite side ofαi or βi is closed to holdαi = βi when
lbαβ∗−

i = ubαβ∗−
i is held. This special feedback rule general-

izes other processing of the root agent.
child_alpha_beta_invariant: αi andβi are shared between agent

i and its child agents. Ifi has only one childj, αd,j andβd,j are
respectively set tomax(0, αi − δi(d)) andmax(0, βi − δi(d))
for eachd ∈ Di. Otherwise,αd,j andβd,j are respectively set to
0 andmax(0, βi−δi(d)) for eachd ∈ Di andj ∈ Chldi. Here,
the lower limit is0. Note that child agents cannot correct overes-
timated boundaries. Therefore, the widest boundaries are set for
multiple child nodes. In addition,lbαβ

d,j andubαβ
d,j are restricted as

min(max(lbαβ
d,j , αd,j), βd,j) andmin(max(ubαβ

d,j , αd,j), βd,j).
update (si, rlvli) using (s, rlvl): si is updated usings in the

same manner as in min-max ADOPT. Ifrlvl > rlvli, thenrlvli
is updated byrlvl.

update (sαβ
i , rlvlαβ

i , αi, βi) using (s, rlvl, α, β): sαβ
i andrlvlαβ

i

are updated bys andrlvl respectively. If agenti has existentially
quantified variable,αi andβi are updated byα andmax(min(βi,
β), α) respectively. Otherwise,αi andβi are updated by
min(max(αi, α), β) andβ respectively.

update (sd,j , rlvld,j , lbd,j , ubd,j , lbαβ
d,j , ubαβ

d,j) using (s, rlvl, lb,
ub, lbαβ , ubαβ): sd,j andrlvld,j are updated bys andrlvl re-
spectively. lbd,j andubd,j are updated usinglb andub in the
same manner as in min-max ADOPT.lbαβ

d,j andubαβ
d,j are updated

as follows. First, the values oflbαβ andubαβ are modified as
min(max(lbαβ , αd,j), βd,j) andmin(max(ubαβ , αd,j), βd,j) re-
spectively. These restrictions are necessary to ensure their
child_alpha_beta_invariant. Then,lbαβ

d,j is updated bylbαβ if

lbαβ > lbαβ
d,j . ubαβ

d,j is updated byubαβ if ubαβ < ubαβ
d,j .

In the case of the alpha-beta method, each agent depends on all
the assignments of its ancestors. Therefore,si, sαβ

i andsd,j must
be completely equal in alpha_beta_consistency and child_cost_
consistency. In child_alpha_beta_invariant, agenti may allocate
αd,j andβd,j which exceed the originallbαβ

d,j andubαβ
d,j . Such al-

location is infeasible. However, in such a case,lbαβ
d,j andubαβ

d,j are

modified to holdlbαβ
d,j = ubαβ

d,j any way, and that causes pruning.

Figure 5: bi-theshold ADOPT

1 Initialize(){
2 di ← d ∈ Di. si ← ϕ. rlvli ← 0. trmi ←false.
3 ptrmi ←false. (stαβ

i , rlvltαβ
i , tα

i , tβ
i )←(si, rlvli, 0, ∞).

4 foreachd ∈ Di, j ∈ Chldi{
5 (sd,j , rlvld,j , lbd,j , ubd,j , tα

d,j , tβ
d,j)

6 ←(si, rlvli, 0, ∞, 0, ∞). }
7 if (i is root){ trmi ←true. Maintenance(). }
8 }
9 Receive(VALUE,j, s, rlvl, tα, tβ , ptrm){

10 update (si, rlvli) using (s, rlvl).
11 ensure threshold_consistency and child_cost_consistency.
12 if (s andrlvl are not old){
13 if (j = parenti){
14 update (stαβ

i , rlvltαβ
i , tα

i , tβ
i ) using (s, rlvl, tα, tβ).

15 ptrmi ← ptrm. }}
16 }
17 Receive(COST,j, s, rlvl, lb, ub){
18 d ← d′ s.t. (xi, d

′) ∈ s. s ← s\{(xi, d
′)}.

19 update (si, rlvli) using (s, rlvl).
20 ensure threshold_consistency and child_cost_consistency.
21 if (s andrlvl are not old){
22 update (sd,j , rlvld,j , lbd,j , ubd,j) using (s, rlvl, lb, ub). }
23 }
24 Maintenance(){
25 ensure threshold_invariant.
26 if (ptrmi ∧ qi = ∃ ∧ ub∗i = tα

i ){
27 di ← d s.t.ubi(d) = tα

i . trmi ←true.
28 }else if(ptrmi ∧ qi = ∀ ∧ lb∗i = tβ

i ){
29 di ← d s.t. lbi(d) = tβ

i . trmi ←true.
30 }else if(ptrmi ∧ rlvli < i){
31 tα′ ← tα

i . tβ ′ ← tβ
i . rlvli ← i.

32 ensure threshold_consistency.
33 if (qi = ∃){ tα

i ← tα′. }else{ tβ
i ← tβ ′

. }
34 ensure child_cost_consistency.
35 ensure threshold_invariant.
36 if (tα

i < lbi(d) ∨ ubi(d) < tβ
i ){

37 di ← d s.t.¬(tα
i < lbi(d) ∨ ubi(d) < tβ

i ). }
38 }else if(tα

i < lbi(d) ∨ ubi(d) < tβ
i ){

39 di ← d s.t.¬(tα
i < lbi(d) ∨ ubi(d) < tβ

i ). }
40 ensure child_threshold_invariant and child_allcation_invariant.
41 foreach j ∈ Chldi{
42 send (VALUE,i, si ∪ {(xi, di)}, rlvli, tα

di,j , tβ
di,j , trmi)

43 toj. }
44 foreach j ∈ Nbrl

i\Chldi{
45 send (VALUE,i, {(xi, di)}, rlvli, ϕ, ϕ, ϕ) to j. }
46 send (COST,i, si, rlvli, lb∗i , ub∗i ) to parenti.
47 }

The pseudo code of the algorithm is shown in Figure 4. The main
procedure is the same as min-max ADOPT. Basically, the process-
ing is similar to min-max ADOPT except for pruning.

In the root noder, αr = βr ∧ (ub∗r = αr ∨ lb∗r = βr) will even-
tually hold. Note thatαr andβr are closed by the special feedback
rule in the alpha_beta_invariant. Then, the root node selects its op-
timal or worst solution. Termination at the root node is announced
by VALUE messages. The VALUE message containsα andβ such
that α = β. When a parent of an agenti has been terminated,
the agenti can terminate in a similar manner ifi’s boundaries are
closed. On the other hand, ifi’s boundaries are still open, additional
search is necessary to close the boundaries. However,αi = βi has
already been held.

In the original ADOPT, a greedy strategy is used for such addi-
tional search. Each agenti intends to select its variable’s valued
such thatubi(d) = thresholdi. Herethresholdi represents the
best lower bound in ADOPT.thresholdi can be considered asαi



except for overestimation. In a leaf nodel, ubl(d) = thresholdl

immediately hold. In other agents, a similar equation will even-
tually hold. However, such a strategy may not converge in the
min-max methods because of the non-monotonicity of computa-
tion. Agents intend to take variables’ values whose costs are on
opposite sides of the boundaries according to their quantifiers. This
often causes a situation in which an agent keeps its boundaries open
ignoring the value of its variable that globally closes boundaries.

To avoid such a problem, we use a reset of search in the termi-
nation sequence. If boundaries are still open in an agenti when
i’s parent has been terminated,i resets the search by increasing the
root levelrlvli. The value ofrlvli is propagated to the descendant
nodes ofi by messages. After the reset of search,i now becomes a
new root node. In the new problem, the variables of ancestor nodes
of i have been fixed. Eventually, the boundary of cost converges in
i. Then,i terminates the search. Although the reset of the search
seems to be an inefficient way, it creates an opportunity to reduce
search spaces. Instead of a complete reset, one side of alpha/beta
that is not controlled byi is restored ini. In the case of the alpha-
beta method, the boundary that is forced byi’s root node is the
exact value.

3.5 bi-threshold ADOPT
The idea of the alpha-beta method leads to another version of

ADOPT with twobacktracking thresholds. The backtracking thresh-
old is a pruning parameter similar to alpha in alpha-beta method.
However, while the alpha-beta method computes excessive costs
for non-optimal solutions, ADOPT with backtracking threshold does
not overestimate costs for all solutions. In the original ADOPT,
a single backtracking threshold is employed. The backtracking
threshold is mainly driven by lower bounds of costs. We insert an-
other backtracking threshold that is mainly driven by upper bounds.
Each agenti employs the following values for the thresholds.tα

i

andtβ
i represent backtracking thresholds ofi. tα

d,j andtβ
d,j repre-

sent backtracking thresholds that are allocated forj ∈ Chldi and
d ∈ Di. For the computation of costs,lbd,j , ubd,j , lbi(d), ubi(d),
lb∗i andub∗i are employed. The key idea of the bi-threshold ADOPT
is to holdlb∗i ≤ tα

i ≤ tβ
i ≤ ub∗i . tα

i andtβ
i are maintained with

relatedstαβ
i andrlvltαβ

i . lbd,j , ubd,j , tα
d,j andtβ

d,j are maintained
with relatedsd,j andrlvld,j . Invariants and update operations of
the algorithm are as follows.

threshold_consistency:stαβ
i andrlvltαβ

i must be equal tosi and
rlvli respectively. If they are different, (stαβ

i , rlvltαβ
i , tα

i , tβ
i )

are reset to their initial value (si, rlvli, 0, ∞).
child_cost_consistency:For eachd ∈ Di andj ∈ Chldi, sd,j

andrlvld,j must be equal tosi andrlvli respectively. If they are
different, (sd,j , rlvld,j , lbd,j , ubd,j , tα

d,j , tβ
d,j) are reset to their

initial value (si, rlvli, 0, ∞, 0, ∞, 0, ∞).
threshold_invariant: lb∗i ≤ tα

i ≤ tβ
i ≤ ub∗i must hold.tα

i andtβ
i

are updated bymin(max(tα
i , lb∗i ), ub∗i ) andmin(max(tβ

i , lb∗i ), ub∗i ).
child_threshold_invariant: For eachd ∈ Di and j ∈ Chldi,

lbd,j ≤ tα
d,j ≤ tβ

d,j ≤ ubd,j must hold.tα
d,j andtβ

d,j are updated

bymin(max(tα
d,j , lbd,j), ubd,j) andmin(max(tβ

d,j , lbd,j), ubd,j).

child_allocation_invariant: tα
i and tβ

i are shared between agent
i and its child agents. Fordi and j ∈ Chldi, tα

di,j and tβ
di,j

are maintained to holdtα
i = δi(di) +

P

j∈Chldi
tα
di,j andtβ

i =

δi(di) +
P

j∈Chldi
tβ
di,j . When the equations are not satisfied,

severaltα
di,j andtβ

di,j are increased or decreased until the equa-
tions are satisfied. child_threshold_invariant is also satisfied in
the reallocation.

update (si, rlvli) using (s, rlvl): This operation is the same as
alpha-beta ADOPT.

update (stαβ
i , rlvltαβ

i , tα
i , tβ

i ) using (s, rlvl, tα, tβ): stαβ
i and

rlvltαβ
i are updated bys andrlvl respectively. tα

i and tβ
i are

updated bytα andtβ respectively. Whentα or tβ exceedslb∗i
or ub∗i , they will be corrected by threshold_invariant. That is the
main difference from alpha-beta ADOPT.

update (sd,j , rlvld,j , lbd,j , ubd,j) using (s, rlvl, lb, ub): sd,j and
rlvld,j are updated bys andrlvl respectively.lbd,j andubd,j

are updated usinglb andub in the same manner as in min-max
ADOPT.

The pseudo code of the algorithm is shown in Figure 5. The main
procedure is the same as for min-max ADOPT. The processing is
similar to min-max/alpha-beta ADOPT except for pruning.

In the termination sequence, it employs reset of search. Even if
bi-threshold ADOPT does not destroy true boundaries of costs, it
presents the same problem in termination as alpha-beta ADOPT.

3.6 Correctness of algorithms
Min-max/bi-threshold ADOPT can be considered as straightfor-

ward in correctness because they are a natural limitation/extension
of the original ADOPT. There are no major modifications in the
maintenances of boundaries of costs. Therefore, we concentrate on
the correctness of alpha-beta ADOPT. As shown in 3.4, the alpha-
beta method enforces candidate boundaries (i.e. alpha and beta) of
optimal cost regardless of true boundaries in subtrees in the search
tree. In each level of the search tree, alpha and beta are maintained
to represent the best boundaries. Then the alpha and beta are ap-
plied to its subtree. If such boundaries are infeasible, the cost value
of the subtree is limited by the alpha and beta. Therefore, infor-
mation of true boundaries is lost, except for the optimal costs. In
alpha-beta ADOPT, true boundaries are computed beside the com-
putation of alpha and beta. Because true boundaries narrow alpha
and beta, at least one of the true boundaries is equal to alpha or beta
when the optimal cost converges in the root agent.

4. EVALUATION
We performed experiments to evaluate the efficiency of the pro-

posed methods. In this section, we show a comparison of their
efficiency, and related considerations.

4.1 Problem settings
In this work, we show several important characteristics about

search iterations as the first result because this class of problems
implicitly contains many parameters, including topologies of mod-
ified pseudo-trees and placements of quantifiers, which mutually
affect each other. We applied the methods to the following class of
benchmark problems.

max-CSP:This class of problem represents maximum CSPs. Each
binary cost function takes0 or 1 for each tuple of values. We set
the ratiot of tuples, whose cost is1, to 1

3
and 5

9
.

COP: In this class of problem, the cost of tuple is randomly set to
an integer value between 0 and 10, selected with uniform proba-
bility.

Each problem consists ofn ternary variables andl × n binary
functions.l is a parameter for the density of binary functions. We
show the results in the case ofl = 2 which illustrate well the char-
acteristics of algorithms. The ratio of universally quantified vari-
ables is set by the parameteru. The quantifiers are randomly se-
lected with the parameteru. The results are averaged for fifty prob-
lem instances. The algorithms are denoted as follows.min-max:



min-max ADOPT.al-bt: alpha-beta ADOPT.bi-thr: bi-threshold
ADOPT. We used simulation programs that iterate message cycles.
In a message cycle, each agent reads the messages from its receiv-
ing queue. Then the agent writes messages for the sending queue.
The messages in each queue are exchanged at the end of the cycle.
The number of message cycles was limited to105. Experiments are
aborted if the number of message cycles raises above a predefined
limit. In that case, the limit was used as the number of message
cycles of the instance.

4.2 Results
The number of message cycles is shown in Figure 6(a), (b) and

(c). In the case ofn = 10, all instances terminate correctly. While
many instances reached to the limit number of message cycles in
the case ofn = 15, the shape of graphs is similar to the case ofn =
10. In the case of max CSP,t = 1

3
, the number of message cycles of

min-max increases according to the ratio of universally quantified
variables. In terms of cost functions of these problems, the ratio of
0 and1 is not even. Additionally, we use0 as the lower limit of cost
value. Therefore, it can be considered that minimizing problems
are easier than maximizing problems. Results of other algorithms
are similar to min-max. Note that the implementation of min-max
is tuned to employ minimal contexts as described in the Section
3.3. Therefore, if pruning methods are insufficient, al-bt and bi-thr,
which use contexts for all ancestors, may require more message
cycles than min-max. The case ofu = 1 is such a situation. In the
cases of0 ≤ u ≤ 0.75, al-bt and bi-thr are more efficient than min-
max. bi-thr is slightly more efficient than al-bt in several cases. The
difference can be caused by the behavior of the boundaries. In al-bt,
possible boundaries are enforced in a top down manner, Therefore,
to avoid overestimation, the boundaries are not divided for multiple
child agents. On the other hand, in bi-thr, a speculative division of
thresholds is performed. Moreover, while each agent maintains one
side of the boundary in al-bt, all agents maintain both backtracking
thresholds in bi-thr. That affects the delay of the convergences. In
the case of max CSP,t = 5

9
, the number of message cycles of

min-max is almost concave up. In contrast, al-bt and bi-thr takes
a lower number of message cycles whenu = 0. That is due to
pruning using lower limit0.

In the case of COP, cost=[0, 10], the number of message cycles
of min-max is concave up. The cost functions of these problems
take uniform cost values, and, in most cases, the cost values are
non-zero. Therefore, when the ratio of minimizing and maximiz-
ing agents is even, the upper and lower bounds converge in fewer
iterations. In the cases of0 ≤ u ≤ 0.5, bi-thr takes a greater
number of message cycles. We believe that the main reason for the
drawback is the optimistic search of ADOPT. As shown in [1, 10],
when the cost values are in a wide range, ADOPT repeatedly im-
proves lower bounds for already searched solutions. On the other
hand, al-bt is better than bi-thr in such cases because of depth first
strategy and boundaries enforced by ancestor agents.

Table 1 shows results regarding the number of message cycles
in a termination sequence. In the table, root and global denotes
number of message cycles at termination in the root and all agents.
While search is reset in termination, the ratio of extra search is rela-
tively low in each method. Effects of each sub-algorithm are shown
in Table 2. tree-VALUE does not employ VALUE messages along
back edges of a pseudo-tree. A linear-tree is based on a sequential
graph instead of a pseudo-tree. The result shows effects of addi-
tional VALUE messages and pseudo-trees.

4.3 Symmetric problems
Algorithms shown in Section 3 are designed for problems whose
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(d) COP,l = 2, cost= [−5, 5]
Figure 6: number of message cycles

lower limit value is0. We replaced the lower limit value with−∞.
For the negative cost values, a modification of child_alpha_beta_
invariant in alpha-beta ADOPT is also necessary. The modified
invariant allocates∞ as βd,j when the agent has multiple child
nodes. Aggregation of cost value is now non-monotonic. However,
the algorithms work because pruning for partial solutions, using
a lower limit of 0, is disabled. Figure 6(d) shows the number of
message cycles when cost values take from integer values between
−5 and5. The graphs are concave up because pruning does not



Table 1: number of message cycles in termination sequence
(max CSP,n = 10, l = 2, t = 5

9
)

u 0 0.5 1
algorithm root global ratio root global ratio root global ratio
min-max 6783 8500 1.25 4941 6905 1.40 9634 11946 1.24

al-bt 1598 2037 1.27 1906 2552 1.34 20215 22234 1.10
bi-thr 1317 1506 1.14 2634 3039 1.15 20221 21265 1.05

Table 2: effect of sub-algorithms (number of message cycles)
(max CSP,n = 10, l = 2, t = 5

9
, u = 0.5)

algorithms all tree-VALUE linear-tree
min-max 6905 8420 12238

al-bt 2552 3047 3972
bi-thr 3039 3705 4585

(average depth of pseudo-trees is8.8)

work effectively aroundu = 0.

5. RELATED WORKS
The QDCOP defined in this paper can be considered as an ex-

tension of QCSP/QDCSP [4, 2]. Indeed, basic QCSPs are repre-
sented as Q(D)COP. For example, instead of using hard constraints,
∀x0∃x1.x0 ̸= x1 and∃x0∀x1.x0 ̸= x1 are represented using the
cost functionf : D0 × D1 → {0, 1} where 0 and 1 denote true
and false respectively. WhenD0 = D1, the optimal cost values
of first and second problems are 0 and 1 respectively. A relaxation
of QCSP is shown in [6]. On the other hand, our main purpose
is to generalize DCOPs into quantified problems. Extended QCSP
named QCOP/QCOP+ is shown in [3]. With QCOP/QCOP+, addi-
tional objective functions and constraints are defined for the QCSP.
That class of problems is different from the problems in this pa-
per. It is possible to address the min-max method with dynamic
programming based algorithms [12]. However, when the induced
width of the pseudo-tree is relatively large, simple dynamic pro-
gramming cannot be applied because of the space complexity. Sev-
eral methods that reduce message cycles [10, 14] can be applied to
the proposed algorithms.

6. CONCLUSION
We proposed a Quantified Distributed Constraint Optimization

problem (QDCOP) that extends the framework of Distributed Con-
straint Optimization problems (DCOPs). In QDCOPs, agents own
existentially/universally quantified variables. The obtained bounds
have to hold for any value of the universally quantified variables.
An existentially quantified variable takes exactly one value for each
context. For the QDCOP, we also propose several methods that
are based on min-max/alpha-beta and ADOPT algorithms. We
have evaluated these algorithms experimentally and describe the
obtained results. Future works will include more detailed analysis
for several graph structures and combinations of quantified vari-
ables, improvements of search algorithms applying efficient meth-
ods for DCOP solvers, and examining practical application do-
mains of QDCOPs.
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