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ABSTRACT

In this paper, we propose a Quantified Distributed Constraint Op-

timization problem (QDCOP) that extends the framework of Dis-
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tributed Constraint Optimization problems (DCOPs). DCOPs have

been studied as a fundamental model of multi-agent cooperation. ] .

INTRODUCTION

In traditional DCOPs, all agents cooperate to optimize the sum of
their cost functions. However, in practical systems some agents
may desire to select the value of their variables without coopera-
tion. In special cases, such agents may take the values with the
worst impact on the quality of the result reachable by the optimiza-
tion process. We apply existential/universal quantifiers to distinct
uncooperative variables. A universally quantified variable is left
unassigned by the optimization as the result has to hold when it

Distributed Constraint Optimization problems (DCOPs) have been
studied as a fundamental model of multi-agent cooperation [9, 11,
12, 14, 15, 16]. With DCOPs, a multi-agent system is represented
as a discrete optimization problem distributed among agents. The
decisions to be made by agents are modeled as variables. Relation-
ships between agents are represented by cost functions. Distributed
search algorithms are employed to compute a solution that glob-

takes any value from its domain, while an existentially quantified

variable takes exactly one of its values for each context. Simi-

lar classes of problems have recently been studied as (Distributed)
Quantified Constraint Problems, where the variables of the CSP
have quantifiers. All constraints should be satisfied independently
of the value taken by universal variables. We propose a QDCOP

that applies the concept of game tree search to DCOP. If the origi

nal problem is a minimization problem, agents that own universally
quantified variables may intend to maximize the cost value in the

worst case. Other agents normally intend to optimize the mini-
mizing problems. Therefore, only the bounds, especially the uppe
bounds, of the optimal value are guaranteed. The purpose of th

new class of problems is to compute such bounds, as well as to
e
several methods that are based on min-max/alpha-beta and ADOP

compute sub-optimal solutions. For the QDCOP, we also propos
algorithms.
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ally optimizes the aggregated value of these functions. Distributed
meeting scheduling, resource allocation in power plants and coor-
dination in sensor networks are modeled as DCOPs [5, 7, 8].

In traditional DCOPs, all agents cooperate to optimize the sum
of their cost functions. However, in practical systems some agents
may desire to select the value of their variables without coopera-
tion. One motivating domain is a contingency planning problem in
a smart grid system, which contains provider nodes and consumer
nodes. The provider nodes try to find a robust plan that can han-
dle any requests from consumers. Another domain is a surveillance
problem by multiple sensors/cameras. These sensors/cameras try to
find a surveillance plan against an intruder. In special cases, such
agents may take the values with the worst impact on the quality of
the result reachable by the optimization process. We apply exis-
_llentialluniversal quantifiers to distinct uncooperative variables. A

universally quantified variable is left unassigned by the optimiza-

tion as the result has to hold when it takes any value from its do-

main, while an existentially quantified variable takes exactly one

of its values for each context. Similar classes of problems have
recently been studied as (Distributed) Quantified Constraint Prob-
lems (QCSP, QDCSP)[4, 2], where the variables of the CSP have
quantifiers. All constraints should be satisfied independently of the
value taken by universal variables. In [2], an extension of the asyn-
chronous backtracking search algorithm has been proposed.

A natural extension from DCOP to QDCORP is to introduce the
concept of game tree search. For example, if the original prob-
lem is a minimization problem, agents that own universally quanti-
fied variables may intend to maximize the cost value (in the worst

' case). Other agents normally intend to optimize the minimizing
problems. Therefore, only the bounds, especially upper bounds, of
the optimal value are guaranteed. The purpose of the new class of
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(a) constraint network  (b) pseudo-tree  (c) modiified pseudo-tree Figure 2: message paths of ADOPT

Figure 1: pseudo-trees 2.3 QDCOP

problems is to compute such bounds, as well as to compute sub- 1 he class of Quantified DCOPs (QDCOPs) is introduced based
optimal solutions. For the QDCOP, we also propose several meth- ©n that of a DCOP. In addition to definition of the DCOP, QDCOP

ods that are based on min-max/alpha-beta and ADOPT algorithms.deﬁnes a sequence of quantified variables similarly to QCSP/QD-
We show how the pseudo-tree-based DCOP algorithms are generCSP- A QDCOP has the for@.(C, F) = qozo - - - gnn.(C, F).
alized into game tree search algorithms. The performance of the @ IS @ sequence of variables whepeis the existential quantifier
proposed methods is evaluated experimentally. 3 or the universal quantifiey. Basically, the goal of QDCOP is
The outline of the paper is as follows. In Section 2, problem def- (© find @ global optimal (minimal) solution in the corresponding
initions including DCOP, QCSP, QDCSP and QDCOP are shown. DCOP. However, its semantics is modified due to quantifiers. Exis-
Then we propose several algori'thms for QDCOP in Section 3. The tentially quantified variables are usual variables. On the other hand,

proposed methods are evaluated experimentally in Section 4. |nuni\_/ersally ql_Jan_tifie_d variables can take any values. Therefore, its

Section 5, related works are considered. We present our conclusion®Ptimal solution is different from that of the DCOP. A QDCOP de-

in Section 6. fines boundaries of the optimal cost value, while a DCOP defines a
unique optimal cost value. The usual optimal cost is now the cost
of the best case. Therefore, the best case defines the lower bound.

2. PROBLEM DEFINITIONS In the worst case, universally quantified variables take values that

In this section, conventional problem definitions including usual increase costs as possible. Therefore, the worst case defines the up-
DCOP and Quantified CSP/DCSP are shown. Then we define aPer bound. This class of problem is similar to the problem in game

Quantified DCOP. tree search [13]. We focus on the worst case problem as a QD-
COP. While any solutions between the best and the worst cases can
2.1 DCOP be chosen, we believe that the worst cost is informative in most of

the practical problems. We assume there exists a virtual agent for
each universally quantified variable, who imitates the adversary’s
actions but cooperates in searching for the bound with its team of
cooperative agents, i.e., they are calculating the badfdlihe.

A distributed constraint optimization problem (DCOP) is defined
by (A, X, D,C, F) whereA is a set of agentsX is a set of vari-
ables, D is a set of domains(' is a set of binary constraints,
and F' is a set of binary functions. Agerithas its own variable
z; € X. x,; takes a value from discrete finite domaih € D.
The value ofz; is controlled by agent. Constraintc; ; € C rep- 3. SEARCH ALGORITHMS FOR QDCOP
resents the relationship betweenandzx;. The cost of an assign-
ment{(z;,d;), (z;,d;)} is defined by a binary functiof, ; € F 3.1 Modified pseudo-tree
such thatf; j(di,d;) : Di x D; — N. The goal is to find a A pseudo-tree [12] is a graph structure that defines a partial or-
global optimal solution4 that minimizes the_global cost fl_Jnct!on: der on variables. The pseudo-tree contains a spanning tree of the
2fi € P, {(widi) ey} ca Jid(dis dj). Inthis paper, tosimplify  congtraint network. For example, the pseudo-tree in Figure 1 (b) is
notations, we may not strictly distinguish each agent from its vari- generated from the constraint network in Figure 1 (a). The edges of

able. the original constraint network are categorized into either the tree
or the back edges of the pseudo-tree. The tree edges represent the
2.2 QCSP/QDCSP partial order relation between the two variables. We use some nota-
The Quantified Constraint Satisfaction problem (QCSP)[4] is an tions to represent agents related to agemet Chld;, Dend; and
extension of classical CSP. The classical CSP is definédby, parent; denote child nodes, descendant nodes, and a parent node
C) where X is a set of variablesD is a set of domains, an@' respectively. And® P; represents a subset of ancestor agents whose
is a set of constraintsr; takes a value from domaiP; € D. A variables are directly related to other variables of several agents in
solution of CSP is a set of assignmefttzo, do), - , (Zn,dn)} the subtree rooted at There are no back edges between different

that satisfies all constraints ifi. In addition to the definition of sub-trees. Therefore, a divide-and-conquer strategy can be applied
the classical CSP, QCSP defines a sequence of quantified variablego the search processing for different sub-trees. By employing this
A QCSP has the forn®.C' = qoxo - - - gnxrn.C. Q is a sequence property, search processing can be performed in parallel.

of variables whergy; is the existential quantifief or the univer- A typical pseudo-tree is based on a depth first search (DFS) tree
sal quantifiety. The semantics of a QCSP.C is recursively de- on a constraint network. The DFS tree is generated in a top down
fined as follows. IfC is empty,Q.C is true. IfQ is of the form manner from a root variable node. However, in the case of QD-
Jxoqix1 - - - gnn, then@.C is true iff there exists a valué € Dy COPs, the order of variables cannot be easily changed. Otherwise,
suchthayiz; - - - gnan.(CU{zo = d}) is true. If Q is of the form quantifiers are evaluated in the wrong order. Therefore, the pseudo-
VZoqiZ1 - - ¢nn, thenQ.Cistrue iff giz1 - - - gnn.(C U{z0 = tree must be modified to keep the ordering. This modification is ap-
d}) is true for all valuesl € Dy. Otherwise.C is false. plied by inserting an extraull edge for each pair of a parent and a

In a Quantified Distributed CSP(QDCSP)[2], the variables are child if the edge is necessary. A simple method for generating such
distributed among agents. In [2], an extension of the asynchronousa modified pseudo-tree is a well known bottom up computation as
backtracking search algorithm has been proposed. follows. In the initial state, agentknows setNbr; of neighbor-



hood nodes and the order relationship of agents. TNén; is
immediately separated inf¥br® and Nbr! which represent upper
and lower neighborhood nodes respectivelyaid;, Dcend;, PP; 1
andparent; are recursively computed using the following equa- 2

: 3
tions. 4
Chld; = {jlparent; =i} 1) g
Dend; = Chld;U ] Dend, 2 7
jEChId; g

PP, = NbrsiU | (PP\{i}) (3) 10
JEChId; ﬂ

o lowestj € PP; Nbrst C Dend; 13

parenti = {undefined otherwise @ 1
15

If 7 is a leaf node,PP; andparent; are immediately computed 16

becauseNbrs. is an empty set. Note thafhld; is an empty 17
set because no agent’s parent is decided yet. Therélorel; is %g

also an empty set. AlsaPP; equalsNbrsi'. We consider that 20
Nbrst C Dend; in Equation 4 is true if both sets are empty. This21
computation eventually converges. ilfs the root node, the final 2o
value ofparent; is considered as aemptyvalue becaus®P; is 23
an empty set. In actual distributed algorithms, each ageshds 24
(Chld;, Dend;, PP, parent;) to parent; whenparent; is de- 25
cided. An example of a modified pseudo-tree is shown in Fig-27
ure 1 (c). 28

We first decide a total order on agents, so that the total order saig
isfies a partial order that is specified in the sequence of quantifier3o
For a given total order, we can uniquely create a pseudo-tree 31
adding some null-edges if necessary. Due to the existence of tBé
predefined partial order, the choice of total orders is rather Iimitecgi

3.2 Computation of cost value and solution 35

Cost values are computed according to pseudo-trees. The co 6
putation is based on ADOPT [11], except that several agents mal
choices contrary to the optimization goal. We assume that each

Figure 3: min-max ADOPT

Main(){
Initialize().
until(forever){
until(receive loop is broken){
if (—trm;){ receive messagese}sq purge messages. }}
if (=((waiting initial s;)Vtrm;)){ Maintenance(). }}

Initialize(){

d; — d € D;. s; — ¢. trm,; —false.ptrm, «false.
foreachd € DL,j S Chldl{ (Sd,j, lbd,]’, ubd,]’)<—(¢, 0, OO) }
if (¢ is root){ trm,; <—true. Maintenance(). }

Receive(VALUE, s, ptrm){
updates; usings.

ensure child_cost_consistency.

if (s is not old){
it (5 = parent;){ ptrm; < ptrm. }}

Receive(COSTj, s, 1b, ub){
d—d st (z;,d) € s s—s\{(x:,d)}.
updates; usings.
ensure child_cost_consistency.
if (s is not old){
update {q,;, lba,;, ubg,;) USINQ(, 1b, ub). }

Maintenance()}{
if (ptrm; A 1b; = ub;){
if(g; = 3N di — ds.t.ubi(d) =1b;.}
elsq d; «— ds.t.lb;(d) = ub;.}
trm; <true.
}else I(lbz (dz) = ub; (dz)){
d; — d s.t.1b;(d) # ub;(d) if suchd exists. }
foreachj € Chld;{
send (VALUE,i, s; U {(32'1, dl)}, trmi) toj. }
foreachj € Nbri\Chid{
send (VALUE, {(x:,d;)}, ¢)t035.}
send (COSTi, s;, by, ub;) to parent;.

agent knows the values of the variables and the cost functions of These default values separate a cost value into upper and lower
other agents that share constraints with the agent. Basically, agenbound values. Once a globally optimal cg{¢) is computed for

4's computation is based on the partial solutignof PP;. s; is
calledcontext s ~ s’ represents compatibility, and is defined as :

ss 2Y(d,d)st(z,d) €sn(z,d)es,d=d (5

The aggregation of costs in agéiis shown as follows. The local

the root variabler,., a sub-optimal solution can be computed in a
top down manner.

3.3 min-max ADOPT

Pseudo-tree based distributed search algorithms can be naturally

extended to address QDCOPs. First, we describe the min-max AD-
OPT algorithm as a basic scheme. As shown in Figure 2, the algo-
rithm works using two types of messages. The VALUE messages
announce the value of variables. In addition to the top down path
of tree edges, short cut paths of back edges are also used. The short
cut messages can contain only the assignments of source agents.
The COST messages announce cost values.

Received values are locally stored in each agentherefore,
contexts; now denotes the newest copy of the assignments of the
ancestors. Since ADOPT is a memory-bounded algorithm, only
the current partial solution is referred to in cost computations. By
Iba,; we denote a copy of the lower bound valuegdfs;) such
that (z;,d) € s; wherej is a child agent of. Similarly, ubg,;

Note that the calculation af; (s;) depends on the quantifigr of denotes the upper bounid; (d) andub; (d) denote lower and upper
variablez;. For existentially quantified variables, the cost values bounds ofg;(s;,d). Furthermore/b; andub; denote boundaries

are minimized as with usual optimization. On the other hand, to of g; (s;) respectively.lbs, ; andub,, ; are maintained with related
compute the worst case values, cost values are maximized for uni-contextsq, ;. The initial values of {4 ;, lba,;, uba,;) are @, 0, co).
versally quantified variables. They are updated using received cost values and the related context.

In actual computation, some cost values may be yet unknown. In Whens; # sq,;, (sa,;, lba,j, ubg,;) are reset to initial values.
such cases, upper and lower limit values are used as default values. The pseudo code of min-max ADOPT is shown in Figure 3. In
In this work, we us® andoo as lower and upper limits respectively.  addition to notations shown above, several notations are uged.

costd; (s:, d) for valued of variablez; and contexs; is defined as:
Si(siyd)= > fis(d,dy) (6)
(zj,dj)€s;, JENbry

The local optimal cost for valué of variablex;, contexts; and the
sub-tree routed at; are recursively defined as:

ais) = {

qi =3
qi =V

minge p; gi(sq, d) @

maxdepi gi (Si7 d)

gi(si,d) = 0i(si,d) + > g5 (s;) St.(zi,d) € 55,5 ~ si (8)
JEChId;



denotes the current assignmentef For the termination sequence,
ptrm; andtrm; are used. They specify whethgtirent; andi

have been terminated or not. In the pseudo codes, we implicitlyl
use the vector of logical time. Each logical time is associated with2
a variable’s value. When the value is changed, its logical time is3
increased. It is necessary to decide the newest value in updatin
contexts. Cost values that are computed for obsolete variables’ val

ues are reset to initial values. The removal of the vector clock is8
not addressed in this paper. In the algorithm, the following invari-g
ant and update operations are used. 9
child_cost_consistencyfor eachd € D; andj € Chld;, sq,; =~ %(1)
s; must hold. If they are differentsg,;, lba,;, uba,;) are resetto 12
their initial value ¢, 0, co). 13
update s; using s: For each(z, d) and(z, d’) such that(z,d) € 14
si A (z,d") € s, if the logical time of d’ is newer than dz,d) 15
is replaced by(z, d’). For each(z,d’) such that(z,d’) ¢ s; A %g
(z,d') € s, (z,d") is appended te;. 18
update (sq,;, lba,;, ubg,;) using(s, ib, ub): sq ; is updated bys. 19
lbg,; is updated byb if Ib > lbg,;. uba,; is updated byb if ub< 5
ubd, 5. 21
22

The outline of the processing is as follows. The processing i83
initiated by the root agent’s VALUE messages. When each ageny
i receives messages, its contexis updated. Then consistencies o5
of (sa,;, lba,;, ubg,;) are maintained. Their values are reset if nec26
essary. £4.;, lba,j, uba ;) andptrm; are also updated according 27
to the types of messages. After receiving messages, agemnt- 28
putes its new state. lfarent; has been already terminated andgg
Ib; = ubj, i selects its optimal value of; and terminates. Oth-
erwise,; selectsr;’s value to search the rest of the solution spacego
Finally, all agents terminate and the system reaches quiescengg.
While it may be possible to select a more desirable solution in thg4
termination sequence, we prefer the solution on the upper bouna5
of optimal cost in the minimizing problem.

This algorithm is clearly a simplified version of the original AD- gg
OPT. There are no major pruning methods suctbasktracking 39
thresholds Additionally, there are opportunities to remove severalyg
redundancies of the algorithm. If a new message is scheduled 4q
carry exactly the same information as a previous message, the ngy
message is not necessary. In particular, in the case of the mig3
max method, each agent only depends on the assignmeftB,of 44
Therefore, the contexts of VALUE messages can be reduced to #5
It reduces extra flipping of variables’ values. In our implementa46
tion, redundant messages are partially limited, and we minimiz&/

the context of VALUE messages. 28
3.4 alpha-beta ADOPT 50

Figure 4: alpha-beta ADOPT

Initialize(){
d; — d € D;.s; — (;3 rlvl «— 0. trm,; «—false.
ptrm,; «—false. (s rlvl , @y 3i)—(sq, rlvl;, 0, 00).
foreachd € D;, e Chl
(Sa,j, rlvla j, lba,j, ubdj, lb Fl ub a0 Qd,js Ba,5)
—(s4, 7l0l;, 0, 00, 0, 00, 0, 0). }
if (¢ is root){ trm; true. Malntenance(). }

Receive(VALUE 4, s, rlvl, «, B, ptrm){
update £;, rlvl;) using 6, rivl).
ensure alpha_beta_consistency and child_cost_consistency.
ensure child_alpha_beta_invariant.
if (s andrlvl are not old){
if(j = parent;){
updateﬁ(o‘ﬁ,rlvlo‘ﬁ, ai, B:) using 6, lvl, o, B).
ensure child alpha beta_invarigntt:m; < ptrm. }}

Receive(COST, s, rlvl, Ib, ub, 167, ub*?)
d—d st (z;,d) € s s s\{(x:,d)}.
update £;, rlvl;) using @, rlvl).
ensure alpha_beta_consistency and child_cost_consistency.
ensure child_alpha_beta_invariant.
if (s andrivl are not old){
update £u;, rlvla,j, Ibaj, uba;, 1b3'7, ubl’) using

(s, rlvl, Ib, ub, 167, ub®?). }

Maintenance(){
ensure alpha_beta_invariant.
ensure child_alpha_beta_invariant.
if(ptrmi AN q; = 3 A ubf = OLZ){
d; «— ds.t. ubl(d) = «y. trm,; «true.
telse iflptrm; A q; =V N1 = B
d; — dS.t. lbl(d) = ﬁz trm,; «true.
telse iflptrm; A rivl; < i){
o — ;. B — Bi.rlvl; .
ensure alpha_beta_consistency.
if(g; = 3){ o «— o' }elsd B; — 5.}
ensure child_cost_consistency.
ensure alpha_beta_invariant.
ensure child_alpha_beta_invariant.
Yelse iIb7*~ £ ub®®* ™ A IbY (di) = ubS” (ds))
di — ds.t.Ib?( 8 ;é ub??(d) if suchd eX|sts.}
foreachg € Chld;
send (VALUE,, s; U {(z,
toj.}
foreachj € Nbri\Chid{
send (VALUE, {(z:i,d;)}, rlvli, ¢, ¢, $) t0 5.}
send (COSTi, si, rlvl, Ibf, ub}, 637", ub®”* ™)
toparent;.

di)}, rlols, o, 5, Ba; g, trms)

The alpha-beta method is a fundamental pruning method for gamethe alpha-beta methodyi andg; represent the alpha and beta of

tree search [13]. This method employs two boundary parameters, .

1657, uby”, 1637(d), ub$”(d), 1637 and ub$”* are similar

alpha and beta, that represent the lower bound and upper bound ofo ib, ;, ubg,;, Ib; (d) ub;(d), Ib; andub; respectively. Because
possible cost values. Alpha represents the lower bound, controlledthe alpha-beta method often computes cost values that exceed true
by the maximizing player, and beta represents the upper bound con-houndaries, we separate these cost values from the true cost val-
trolled by the minimizing players. Neither player can modify atype ues. Additionally/b5”*~ andubfﬂ*_ are introduced for restricted

of boundary other than the one given by its type. In QDCOP, each |, jes oflb2 andubaﬁ* 1699~ andub®®*~ are defined as fol-
agent performs either as a minimizing or as a maximizing player. | ;..o ¢ 7

The pruning is driven in a top down manner. When an agent reports
the cost value of the current partial solution, its parent agent nar-
rows alpha/beta according to the cost value. Then the new alpha/
beta value is used to prune the child agent’'s search. This pruning

lbf5*7 = min(max(lb?5*70ti),ﬂi) 9
ub?™*” = min(max(Ib?”*, ), Bi) (10)

can be applied to pseudo-tree based min-max ADOPT. Alpha/betaThe alpha/beta values are shared betweand its child agents.

values are managed using a technique similar tdodektracking
thresholdin the original ADOPT.
In the alpha-beta ADOPT, an agergmploys several values for

aq,; and Bq ; represent the shared value for child aggnh the
case ofr; = d.
In addition to the implicit vector clock for the values of vari-



ables, a logical timeroot level is introduced. The logical time is

used to detect whether search is reset in the termination sequence.

The necessity of the reset will be discussed belavwl; repre-

1

sentsi’s current newest root level. Consistency of context and root2

level are maintained for alpha, beta and cost valaesandj3; are 3
maintained with related contex}” andrivl”. Iba,;, uba,;, b3, 4
ubg‘fj, aq,; andBq,; are maintained with the related context; 2
andrivlg,;. In our algorithm we use the following invariants and 7
update operations. 8
9

aIpha_beta_consistencysfﬁ andrlvl?ﬁ must be equal te; and 10
rlvl; respectively. If they are differents{”, rivi®’, ci, 3:) are ﬂ
reset to their initial values(;, rlvl;, 0, o). 13
child_cost_consistency:For eachd € D; andj € Chld;, sa,; 14
andrivly,; must be equal te; andrivi; respectively Ifthey are 15
different, Ga,;, rlvla j, Iba j, uba,j, 157, uby’, ca j, Ba ;) are 16
reset to their initial values(;, rlvl;, 0, oo, 0, 0o, 0, 00). g

alpha_beta_invariant: «,; and 3; must take the best upper and
lower bounds of cost values respectively. That is achieved

Figure 5: bi-theshold ADOPT

follows. First, b3 andub”* are calculated as shown in equa- 51
tions 7 and 8. Therip?”*~ andub?’*~ are calculated as shown 22
in equations 9 and 10. If agenhas an existentially quantified 23
variable, 3; is updated bymin(8;, uby”*~). Otherwise,a; is

updated bymax(cy, 1b2°*7). Additionally, in the root agent,

theﬁopposite side ofy; or 3; is closed to holdv; = B; when
by~

NN
ahs

26
27
ub?”*~ is held. This special feedback rule general-og

izes other processing of the root agent. 29
child_alpha_beta_invariant: «; andg; are shared between agent 30
i and its child agents. Ifhas only one child, aq,; andjq ; are 31
respectively set tanax(0, ; — d;(d)) andmax (0, 3; — d;(d)) 32
for eachd € D;. Otherwiseny ; andf,, ; are respectively setto 33
0 andmax(0, 3; — d;(d)) for eachd € D; andj € Chld;. Here, 34
the lower limit is0. Note that child agents cannot correct overes35
timated boundaries. Therefore, the widest boundaries are set 36

Initialize(){
d; — d € D;. s; — ¢.rlvl; — 0.trm,; «—false.
ptrm,; —false. (smﬁ rlvlmﬁ ty, tf)<—(si, rlvl;, 0, 00).
foreachd € D;, j € Chld; i
(Sa.j 7lvla j, Iba j, uba j, t3 5.t} ;)
—(s4, Tlvl;, 0, 00, 0, 00). }
if (¢ is root){ trm; true. Maintenance(). }

Receive(VALUE 4, s, rlvl, t, P, ptrm){
update §;, rlvl;) using s, rivl).
ensure threshold_consistency and child_cost_consistency.
if (s andrivl are not old){
if(j = parent;){
update £:°?, rivl!®?, t&, t7) using 6, rivl, t, t%).
ptrm; < ptrm. }}
Receive(COST}, s, rlvl, 1b, ub){
d—d st (z;,d) €s.s—s\{(z:,d)}.
update £;, rlvl;) using ¢, rivl).
ensure threshold con5|stency and child_cost_consistency.
if (s andrlvl are not old){
update{q,;, rivla,;, lba,j, ubg,;) using s, rlvl, Ib, ub). }

Maintenance()}{
ensure threshold_invariant.
if (ptrms A gs = I A ub; =)
d; — ds.t.ub;(d) = t§. trm; —true.
Yelse ifptrm; A g; =V A b = t7){
d; — ds.t.ibi(d) = t?. trm; —true.
Yelse ifptrm; A rivi; < i
ot P — 7 rlol; — .
ensure threshold_consistency.
if(qi = I 17—t Yelsd ¢! — 7.}
ensure child_cost conS|stency
ensure threshold_invariant.

if (0 < 1bi(d) V ubi(d) < t7)

multiple child nodes. In addltlon]bd’3 andub”’ are restricted as

rmn(max(lbd’J7 ad,;), Ba,;) andmln(max(ubdd ,0d,5)s Bd,g)-

update (s;, rlvl;) using (s, rlvl): s; is updated using in the
same manner as in min-max ADOPTrlvl > rivl;, thenrivl,
is updated by-lvl.

update (sf‘ﬁ, rlvlf‘ﬁ, a;, 3;) using (s, rivl, , B): sf‘ﬁ andrlvlf‘ﬁ
are updated by andrivl respectively. If agenthas existentially
quantified variabley; andg; are updated by andmax (min(;,
3), «) respectively. Otherwisey; andg; are updated by
min(max (o, «), ) andj respectively.

update (sa;, rlvla,;, lba ;. uba,;, 165", ubl’) using (s, rivl, ib,
ub, 16°%, ub*P): s4 ; andrivly; are updated by andrivl re-
spectively. lbs,; andubg,; are updated usingh and ub in the
same manner as in min-max ADORT; andub; are updated

as follows. First, the values @6 andub*® are modified as
min(max(1b®?, aq ;), Ba,;) andmin(max(ub®®, aq ;), Ba.;) re-
spectively. These restrictions are necessary to ensure their
child_alpha_beta_invariant. Thett;” is updated byiv*” if

1627 > 1637 ub” is updated byub®” if ub®? < uby’.

In the case of the alpha-beta method, each agent depends on a

the assignments of its ancestors. Thereferes®” ands,, ; must
be completely equal in alpha_beta_consistency and child_cost_
consistency. In child_alpha_beta_invariant, agentay allocate
aq,; andf3a ; which exceed the origindb;’ andubj”. Such al-
location is infeasible. However, in such a ca&@f; andubgg are

modified to holdlbjf; = ubgf; any way, and that causes pruning.

37 di — dst.=(t& < Ibi(d) V ubi(d) < t7).}
38  Jelse if{t® < ibi(d) V ubi(d) < t7)
39

di — ds.t.=(t& < Ib; éd) Voubi(d) < t7).}
40 ensure child_threshold_invariant and child _allcation_invariant.

41 foreachj € Chld{

42 send (VALUE, s; U {(z:,d;)}, rivl, tg, tdhj, trm;)
43 toj.} '

44  foreachj € Nbri\Chid;{

45  send (VALUE, {(x;,d;)}, rlvls, ¢, ¢, )10 . }

Z‘rg send (COSTi, s;, rlvl;, Ib], ub}) to parent;.

The pseudo code of the algorithm is shown in Figure 4. The main
procedure is the same as min-max ADOPT. Basically, the process-
ing is similar to min-max ADOPT except for pruning.

In the root node, o, = 3, A (ub;: = a.- VIb): = 3,) will even-
tually hold. Note thatv,. and3, are closed by the special feedback
rule in the alpha_beta_invariant. Then, the root node selects its op-
timal or worst solution. Termination at the root node is announced
by VALUE messages. The VALUE message contairend3 such
thata = 8. When a parent of an ageinthas been terminated,
IEhe agent can terminate in a similar manner:ig boundaries are
closed. On the other hand;Ii§ boundaries are still open, additional
search is necessary to close the boundaries. Howeyet, 3; has
already been held.

In the original ADOPT, a greedy strategy is used for such addi-
tional search. Each agenintends to select its variable’s valde
such thatub; (d) = threshold;. Herethreshold; represents the
best lower bound in ADOPTEhreshold; can be considered as



except for overestimation. In a leaf notleub; (d) = threshold; update (s;, rlvl;) using (s, rlvl): This operation is the same as
immediately hold. In other agents, a similar equation will even-  alpha-beta ADOPT.
tually hold. However, such a strategy may not converge in the update (s*”, rlvi‘*”, 12, t7) using (s, rivl, t, t°): s!*” and
min-max methods because of the non-monotonicity of computa- rlvlf”ﬂ are updated by andrivl respectively. t andtf are
tion. Agents intend to take variables’ values whose costs are on updated byt and¢” respectively. When® or ¢° exceeddb;
opposite sides of the boundaries according to their quantifiers. This  or ub}, they will be corrected by threshold_invariant. That is the
often causes a situation in which an agent keeps its boundaries open main difference from alpha-beta ADOPT.
ignoring the value of its variable that globally closes boundaries.  update (8a,5, Tlvla,j, Iba ;, ubg ;) using (s, rivl, Ib, ub): sq,; and

To avoid such a problem, we use a reset of search in the termi- rlvlg; are updated by andrlvl respectively.lby ; andub,;
nation sequence. If boundaries are still open in an ageviten are updated usintp andub in the same manner as in min-max
7's parent has been terminatédesets the search by increasing the ADOPT.
root levelrivl;. The value of-lvl; is propagated to the descendant
nodes ofi by messages. After the reset of seaiamow becomes a The pseudo code of the algorithm is shown in Figure 5. The main
new root node. In the new problem, the variables of ancestor nodesprocedure is the same as for min-max ADOPT. The processing is
of i have been fixed. Eventually, the boundary of cost converges in similar to min-max/alpha-beta ADOPT except for pruning.
i. Then,i terminates the search. Although the reset of the search  In the termination sequence, it employs reset of search. Even if
seems to be an inefficient way, it creates an opportunity to reduce bi-threshold ADOPT does not destroy true boundaries of costs, it
search spaces. Instead of a complete reset, one side of alpha/betaresents the same problem in termination as alpha-beta ADOPT.

that is not controlled by is restored in.. In the case of the alpha- .
beta method, the boundary that is forcedits/root node is the 3.6 Correctness of algonthms

exact value. Min-max/bi-threshold ADOPT can be considered as straightfor-
ward in correctness because they are a natural limitation/extension
3.5 Dbi-threshold ADOPT of the original ADOPT. There are no major modifications in the

The idea of the alpha-beta method leads to another version Ofmaintenances of boundaries of costs. Therefore, we concentrate on

ADOPT with twobacktracking thresholdsThe backtracking thresh- Lhe correﬁtndessfof alpha-bg_tg ADt?PT'dAS. shown ir} 3h'4‘ thg leha- f
old is a pruning parameter similar to alpha in alpha-beta method. eta method entorces candidate boundaries (i.e. alpha and beta) o

However, while the alpha-beta method computes excessive costs optimal cost regardless of true boundaries in subtrees in the search
for non-optimal solutions, ADOPT with backtracking threshold does tree. In each Ire]zvetl) of tt;)e segrch trec::'rhalph? an? l;eta a(;ebmalntalned
not overestimate costs for all solutions. In the original ADOPT, to repre_sentt e best boundaries rhen t 1€ aipha an eta are ap-
a single backtracking threshold is employed. The backtracking plied to its subtree. If such boundaries are infeasible, the cost value

threshold is mainly driven by lower bounds of costs. We insert an- of the subtree is limited by the alpha and beta. Therefore, infor-

. . . : tion of true boundaries is lost, except for the optimal costs. In
other backtracking threshold that is mainly driven by upper bounds. ma ) -
Each ageni employs the following values for the thresholdﬁ. alpha-beta ADOPT, true boundaries are computed beside the com-

andtﬁ represent backtracking thresholdsiot< andt repre- putation of alpha and beta. Because true boundaries narrow alpha
sent backtrackmg thresholds that are aIIocated] for Chjld and and beta, at least one of the true boundaries is equal to alpha or beta
d € D;. For the computation of costiyy ;, uba,;, Ibi(d), ubi(d), when the optimal cost converges in the root agent.

by andub; are employed. The key idea of the bi-threshold ADOPT

is to hold{b; <t < tB < ubj. t§ andt" are maintained with 4. EVALUATION

relateds’*” andrlvl“"" 1baj, uba,j, 5 andt" are maintained We performed experiments to evaluate the efficiency of the pro-
with relatedsd g and rlvlq ;. Invariants and update operations of posed methods. In this section, we show a comparison of their
the algorithm are as follows. efficiency, and related considerations.

4.1 Problem settings

In this work, we show several important characteristics about
search iterations as the first result because this class of problems
implicitly contains many parameters, including topologies of mod-
ified pseudo-trees and placements of quantifiers, which mutually
affect each other. We applied the methods to the following class of
benchmark problems.

threshold_consistency:s!*? andrivl!*? must be equal te; and
rlvl; respectively. If they are differents(®”, rlvlt*?, 12, t7)
are reset to their initial values{, rivl;, 0, c0).

child_cost_consistency:For eachd € D; andj € Chld;, sq,;
andrlvly,; must be equal te; andrivl; respectively. If they are
different, Ga,;, rlvla,j, lba,j, ubd,j, tg ;, tg,j) are reset to their
initial value (s;, rlvl;, 0, 0o, 0, 0o, 0, 00).

threshold_invariant: b7 <t < tf < ub; must hold.t§ andtf max-CSP:This class of problem represents maximum CSPs. Each
are updated bynin(max(t$', 1b7), ub;) andmin(max(tf, Ib}),uby).  binary cost function take$or 1 for each tuple of values. We set
child_threshold_invariant: For eachd € D; andj € Chld;, the ratiot of tuples, whose cost i to 3 and 2.

lba; <tg,; < tﬁj < ubg,; must hold.tg andtfj are updated COP: In this class of problem, the cost of tuple is randomly set to
by min(max(t5 ,, 1ba,;), uba,;) andmin(max( g b )y ubaj). gir;itlnteger value between 0 and 10, selected with uniform proba-
child_allocation_invariant: ¢ and tf are shared between agent 4
i and its child agents. Faf; andj € Chld;, tg, ; and th i Each problem consists of ternary variables antl x n binary
A o functions.!l is a parameter for the density of binary functions. We
are maintained to holtf* = §;(d; X tS andt? = . L
8 & () + ZJEC_W?' i3 L show the results in the caselof 2 which illustrate well the char-
6i(di) + 3 ecng, ta,.;- When the equations are not satisfied, acteristics of algorithms. The ratio of universally quantified vari-
severalty. andt" ; are increased or decreased until the equa- ables is set by the parameter The quantifiers are randomly se-
tions are satlsfled child_threshold_invariant is also satisfied in lected with the parameter. The results are averaged for fifty prob-

the reallocation. lem instances. The algorithms are denoted as follawis-max:



min-max ADOPT.al-bt: alpha-beta ADOPThi-thr: bi-threshold le+s P -@-—-::;ﬁ?’--"“@
ADOPT. We used simulation programs that iterate message cycles. O’/ Ei -
In a message cycle, each agent reads the messages from its receiv- o @ """ Zﬂ
ing queue. Then the agent writes messages for the sending queue. g Ve —&— min-max (n=10)
The messages in each queue are exchanged at the end of the cycle. §o g —&— al-bt (n=10)
The number of message cycles was limited. Experiments are 3 —a&— bi-thr (n=10)
aborted if the number of message cycles raises above a predefined g -0~ min-max (n=15)
limit. In that case, the limit was used as the number of message s

. . --3-- al-bt (n=15)
cycles of the instance. £

2 ---&-- bi-thr (n=15)

4.2 Results

The number of message cycles is shown in Figure 6(a), (b) and
(c). In the case of. = 10, all instances terminate correctly. While
many instances reached to the limit number of message cycles in
the case of. = 15, the shape of graphs is similar to the case &f
10. In the case of max CSP= % the number of message cycles of

0 0.25

0.5

0.75

1

ratio of universal quantifier (u)

(@ max CSP| =2,t = 3

min-max increases according to the ratio of universally quantified %> le+d ¢ D_o— min-max (n=10)
variables. In terms of cost functions of these problems, the ratio of ° —8— al-bt (n=10)

0 and1 is not even. Additionally, we udgas the lower limit of cost ;" —a— bi-thr (n=10)
value. Therefore, it can be considered that minimizing problems g le+3 o min-max (n=15)
are easier than maximizing problems. Results of other algorithms %

are similar to min-max. Note that the implementation of min-max £ 8- albt (n=15)

is tuned to employ minimal contexts as described in the Section 2 1lew2 ~4-- bi-thr (n=15)

3.3. Therefore, if pruning methods are insufficient, al-bt and bi-thr,
which use contexts for all ancestors, may require more message
cycles than min-max. The casewf 1 is such a situation. In the

0 0.25

0.5

0.75

1

ratio of universal quantifier (u)

(b) max CSP} = 2, ¢ = 3

cases of) < u < 0.75, al-bt and bi-thr are more efficient than min-
max. bi-thr is slightly more efficient than al-bt in several cases. The
difference can be caused by the behavior of the boundaries. In al-bt, "
possible boundaries are enforced in a top down manner, Therefore, 2 Zil_e_min_max(nﬂo)
to §v0|d overestimation, the bounglarlgs are not d|V|dgd fO( ml_JItlpIe o Lesa G D_5— al-bt (n=10)
child agents. On the other hand, in bi-thr, a speculative division of % [ )

. R . . n —a&— bi-thr (n=10)
thresholds is performed. Moreover, while each agent maintains one 8 _
side of the boundary in al-bt, all agents maintain both backtracking E -9 min-max (n=15)
thresholds in bi-thr. That affects the delay of the convergences. In Z --8-- al-bt (n=15)
the case of max CSR, = 3, the number of message cycles of 3 1e43 , ---&- bi-thr (n=15)
min-max is almost concave up. In contrast, al-bt and bi-thr takes 0 035 05 075 1

a lower number of message cycles when= 0. That is due to
pruning using lower limi0.

In the case of COP, cog3; 10], the number of message cycles
of min-max is concave up. The cost functions of these problems
take uniform cost values, and, in most cases, the cost values are
non-zero. Therefore, when the ratio of minimizing and maximiz-
ing agents is even, the upper and lower bounds converge in fewer
iterations. In the cases of < u < 0.5, bi-thr takes a greater
number of message cycles. We believe that the main reason for the
drawback is the optimistic search of ADOPT. As shown in [1, 10],

num. of message cycles

ratio of universal quantifier (u)

(c) COP, = 2, cost= [0, 10]

ﬂ—e— min-max (n=10)
D—g— al-bt (n=10)
—&— bi-thr (n=10)

---©-- min-max (n=15)

when the cost values are in a wide range, ADOPT repeatedly im- --3-- al-bt (n=15)
proves lower bounds for already searched solutions. On the other les3 w—-&- bi-thr (n=15)
hand, al-bt is better than bi-thr in such cases because of depth first

0 025 05 075 1

strategy and boundaries enforced by ancestor agents.

Table 1 shows results regarding the number of message cycles
in a termination sequence. In the table, root and global denotes
number of message cycles at termination in the root and all agents.

ratio of universal quantifier (u)
(d) COP|l = 2, cost= [—5, 5]
Figure 6: number of message cycles

While search is reset in termination, the ratio of extra search is rela- jower limit value is0. We replaced the lower limit value withoo.

tively low in each method. Effects of each sub-algorithm are shown por the negative cost values, a modification of child_alpha_beta_

in Table 2. tree-VALUE does not employ VALUE messages along invariant in alpha-beta ADOPT is also necessary. The modified

back edges of a pseudo-tree. A linear-tree is based on a sequentighyariant allocates as 3,; when the agent has multiple child

graph instead of a pseudo-tree. The result shows effects of addi-nodes. Aggregation of cost value is now non-monotonic. However,

tional VALUE messages and pseudo-trees. the algorithms work because pruning for partial solutions, using

. a lower limit of 0, is disabled. Figure 6(d) shows the number of

4.3 Symmetric problems message cycles when cost values take from integer values between
Algorithms shown in Section 3 are designed for problems whose —5 and5. The graphs are concave up because pruning does not



Table 1: number of message cycles in termination sequence
(max CSPp = 10,1 =2,t = g)

u 0 0.5 1
algorithm| root global ratio| root global ratio] root global ratio
min-max | 6783 8500 1.29 4941 6905 1.40 9634 11946 1.24

al-bt | 1598 2037 1.27 1906 2552 1.34 20215 22234 1.1
bi-thr 1317 1506 1.14 2634 3039 1.15 20221 21265 1.0%

Table 2: effect of sub-algorithms (number of message cycles)
(maxCSPp = 10,1 =2,t = 2,u =0.5)

algorithms| all  tree-VALUE linear-treg|
min-max | 6905 8420 12238
al-bt 2552 3047 3972
bi-thr 3039 3705 4585

(average depth of pseudo-trees i8)
work effectively around: = 0.

5. RELATED WORKS

The QDCOP defined in this paper can be considered as an ex-
tension of QCSP/QDCSP [4, 2]. Indeed, basic QCSPs are repre-
sented as Q(D)COP. For example, instead of using hard constraints,
Vrodri.zo # x1 and3xeVai.xo # x1 are represented using the
cost functionf : Dy x D1 — {0,1} where 0 and 1 denote true
and false respectively. Wheby = D;, the optimal cost values
of first and second problems are 0 and 1 respectively. A relaxation
of QCSP is shown in [6]. On the other hand, our main purpose
is to generalize DCOPs into quantified problems. Extended QCSP
named QCOP/QCOP+ is shown in [3]. With QCOP/QCOP+, addi-
tional objective functions and constraints are defined for the QCSP.
That class of problems is different from the problems in this pa-
per. It is possible to address the min-max method with dynamic
programming based algorithms [12]. However, when the induced
width of the pseudo-tree is relatively large, simple dynamic pro-
gramming cannot be applied because of the space complexity. Sev-
eral methods that reduce message cycles [10, 14] can be applied to
the proposed algorithms.

6. CONCLUSION

We proposed a Quantified Distributed Constraint Optimization
problem (QDCOP) that extends the framework of Distributed Con-
straint Optimization problems (DCOPs). In QDCOPs, agents own
existentially/universally quantified variables. The obtained bounds
have to hold for any value of the universally quantified variables.

(3]

(4]

(5]

6]

distributed constraint satisfaction problemThe IJCAI-09
Workshop on Distributed Constraint Reasoning (DCR)
20009.

M. Benedetti, A. Lallouet, and J. Vautard. Quantified
constraint optimization. I€P '08: Proceedings of the 14th
international conference on Principles and Practice of
Constraint Programmingpages 463-477, Berlin,

Heidelberg, 2008. Springer-Verlag.

H. M. Chen.The computational complexity of quantified
constraint satisfactionPhD thesis, Ithaca, NY, USA, 2004.
Adviser-Kozen, Dexter.

A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded devices
using the max-sum algorithm. [fth International Joint
Conference on Autonomous Agents and Multiagent Systems
pages 639-646, 2008.

A. Ferguson and B. O’Sullivan. Quantified constraint
satisfaction problems: from relaxations to explanation$nin
Proc. of Int. Joint. Conf. on Atrtificial Intelligence (IJCAI
pages 74-79. Morgan Kaufmann, 2007.

[7]1 A. Kumar, B. Faltings, and A. Petcu. Distributed constraint

(8]

(9]

[10]

An existentially quantified variable takes exactly one value for each [11]

context. For the QDCOP, we also propose several methods that
are based on min-max/alpha-beta and ADOPT algorithms. We
have evaluated these algorithms experimentally and describe the

obtained results. Future works will include more detailed analysis [12]

for several graph structures and combinations of quantified vari-
ables, improvements of search algorithms applying efficient meth-

optimization with structured resource constraintsSARMAS
'09: Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systgmages 923-930,
Richland, SC, 2009. International Foundation for
Autonomous Agents and Multiagent Systems.

R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and
P. Varakantham. Taking dcop to the real world: Efficient
complete solutions for distributed multi-event scheduling. In
3rd International Joint Conference on Autonomous Agents
and Multiagent Systempages 310-317, 2004.

R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation3id
International Joint Conference on Autonomous Agents and
Multiagent Systempages 438—445, 2004.

T. Matsui, M. C. Silaghi, K. Hirayama, M. Yokoo, and

H. Matsuo. Directed soft arc consistency in pseudo trees. In
AAMAS '09: Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems
pages 1065-1072, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent Systems.
P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guaranteegrtificial Intelligence 161(1-2):149-180,
2005.

A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. I8th International Joint

Conference on Atrtificial Intelligenc@ages 266—271, 2005.

ods for DCOP solvers, and examining practical application do- [13] S. Russell and P. Norvidhrtificial Intelligence: A Modern

mains of QDCOPs.
7. ACKNOWLEDGMENTS

This work was supported by Japan Society for the Promotion of
Science, Grant-in-Aid for Scientific Research (B), 19300048.

Approach Prentice Hall, second edition, 2003.

[14] M. C. Silaghi and M. Yokoo. Adopt-ing: unifying

asynchronous distributed optimization with asynchronous
backtrackingJournal of Autonomous Agents and
Multi-Agent System4d.9(2):89-123, 10 2009.

[15] W. Yeoh, A. Felner, and S. Koenig. Bnb-adopt: an

8. REFERENCES
[1] S. M. Ali, S. Koenig, and M. Tambe. Preprocessing
techniques for accelerating the dcop algorithm adopdtin
International Joint Conference on Autonomous Agents and
Multiagent Systempages 1041-1048, 2005.
[2] S. Baba, N. Nishimura, A. lwasaki, and M. Yokoo.
Cooperative problem solving against adversary: Quantified

[16]

asynchronous branch-and-bound dcop algorithn7tin
International Joint Conference on Autonomous Agents and
Multiagent Systempages 591-598, 2008.

R. Zivan. Anytime local search for distributed constraint
optimization. InTwenty-Third AAAI Conference on Atrtificial
Intelligence pages 393-398, 2008.



