
A GPU-suppored High-Level Programming
Language for Image Processing

Ami ONO∗, Katsuhiko KONDO∗, Takafumi INABA∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—Real-time image/video processing applications are
now in demand with the advance of general purpose computers
and mobile devices. However, programmers have to handle the
digital images, and be aware of the resolutions and pixels. This
makes image processing programming unintuitive. On the other
hand, image/video processing typically has data parallelisms,
and the performance gains are expected on GPUs. CUDA is
developed for GPUs but writing the image/video processing
programs efficiently with CUDA needs many CUDA-specific
operations. They are not the essence of image/video processing
and bother programmers. We have proposed a high-level video
processing library RaVioli for solving this problem. RaVioli
allows programmers to be unaware of resolutions, but there
are some restrictions for the programming. Hence, this paper
proposes a more intuitive programming language for image/video
processing and a translator for the language. By using the
translator, programmers can benefit from GPUs without the
knowledge about both the GPU architecture and the CUDA APIs,
and achieve performance gains.

I. INTRODUCTION

Video processing applications are now in demand on a
great variety of platforms such as mobile devices or high
performance servers. As mobile devices have been devel-
oped drastically, it is especially important to achieve high
performance image/video processing on embedded devices.
Generally, the performance of the processor for these em-
bedded devices might be lower than that of general-purpose
processors, and the power consumption should be kept lower
from the viewpoint of the battery life. Therefore, it is essential
for developers to handle the limited resources efficiently in
order to realize real-time video processing on these devices.
Furthermore, for implementing image/video processing appli-
cations for these mobile devices, what programmers should do
is not only porting applications for general-purpose systems to
these mobile platforms, but also implementing functions which
determine processing precision and regulate throughput rate.
Hence, programmers are required to write video processing
applications for mobile devices and general-purpose systems
separately and unportably, and it is troublesome for program-
mers to write such complicated programs.

On the other hand, CUDA[1] has been developed as an
integrated development environment for GPUs. GPUs can
achieve high performance by executing massively parallel
threads simultaneously. Generally, video/image processing has
data parallelism in its algorithm. For example, pixels in an

image typically have data parallelism. So, image processing
with GPU is likely to achieve high performance. However, for
using GPUs effectively, a deep knowledge about them has been
required. For example, data should be transferred between
CPU and GPU, several memories of GPU which have different
access speeds and sizes should be used according to the cases
of processing, and a lot of threads should be managed. This
would have been a burden to programmers.

To solve these problems, we have proposed a high-level
video processing library RaVioli (Resolution-Adaptable Video
and Image Operating Library) which guarantees pseudo real-
time video processing on general-purpose computing systems.
RaVioli conceals two types of resolutions, frame rate and
the number of pixels, from programmers. RaVioli also sim-
plifies the traditional iterative processing which used to be
implemented by multiple loops. This makes image and video
processing programming more intuitive. Furthermore, RaVioli
has been improved to support CUDA GPU platforms. This
improvement allows programmers to use GPUs effectively
without considering GPU architectures.

However, because these functions are provided as C++ li-
brary, programmers have to consider the C++ language restric-
tions or features which are not essential for image processing.
Hence, this paper proposes a new programming language as a
front-end of RaVioli. With this language, programmers can
describe image/video processing programs more intuitively.
Furthermore, we have implemented a translator. It can generate
both a program which can be linked with RaVioli and a
program which can be linked with CUDA-supported RaVioli
from a program written in this language.

With the translator, programs written in the language pro-
posed in this paper are able to be executed on GPUs.

II. RESEARCH BACKGROUNDS

A. Related Works

For real-time video processing, adjusting the processing
load is very important. Nevertheless, writing multiple routines
with different algorithms has been the only solution for the
load adjustment. One example that has been proposed is the
imprecise computation model (ICM)[2], [3]. In this model,
computation accuracy is varied corresponding to the given
computation time. With the confidence-driven architecture,
which is based on the ICM, developers have to troublesomely

tsumura
テキストボックス
This paper is author’s private version of the paper published as follows:
Proc. of 7th Int'l Conf. on Signal-Image Technology and Internet-Based Systems (SITIS2011), pp.245–252
Copyright (C) 2011 IEEE
DOI: 10.1109/SITIS.2011.66

implement multiple routines with different algorithms and
different loads, and the confidence-driven architecture selects
a suitable routine dynamically and empirically among them.

VIGRA[?] and OpenCV[4], [5] are well-known video
processing libraries. They aim at high-level descriptivity of
video processing. Adopting template techniques similar to
the C++ STL, VIGRA allows programmers to easily adapt
given components to their programs. OpenCV provides many
typical video processing algorithms as C functions or C++
methods. However, adjusting computation load is difficult to
be implemented with these libraries.

In addition, some libraries for image processing with graph-
ics hardwares are also proposed. OpenVIDIA[6] is a library
aimed at providing a GPU-accelerated processing framework
for image processing and computer vision. It provides a
simple API for some common computer vision algorithms.
GpuCV[7] is an extension of OpenCV. It transparently man-
ages hardware capabilities, data synchronization, activation of
low level GLSL (OpenGL shading Language)[8] and CUDA
programs, and offers a set of GPU-accelerated operators for
image processing. MinGPU[9] contains all of the necessary
functions to convert an existing CPU code to GPU code. It also
implements several well known computer vision algorithms.
Although these libraries help programmers to write image
processing with GPU, it is impossible for programmers to
write GPU programs without any knowledge about GPU or
considering GPU architectures.

On the other hand, some programming languages for image
processing are also developed. A loopless image processing
language[10], for example, allows programmers to develop
image processing programs for embedded devices without
knowledge about the processors or memory architectures. This
language enables to operate arrays without using loops in
programs with some special operators. However, programmers
have to write programs with a formula editor and consider
array sizes.

B. Overview of RaVioli

The approach of the library RaVioli[11], [12] is completely
different from existing computation models or image/video
processing libraries/languages. RaVioli proposes a new pro-
gramming paradigm with which programmers can write im-
age/video processing applications intuitively. RaVioli conceals
spatial resolution (pixel rate) and temporal resolution (frame
rate) of a video from programmers. We human beings naturally
have no concept of resolutions through our visual recognition.

For example, we can recognize object motion in our view
without any pixel or frame. However, pixels and frames
are indispensable for motion object detection programs on
computer systems. Such motion object detection programs are
sometimes implemented by using a block matching algorithm,
which searches for the most similar block between current
window and previous one. The similarity between image win-
dows will be calculated by SAD (sum of absolute differences)
or another alternative method, and the method should be im-
plemented by cumulative pixel value differences. Resolutions

640

480

for(x = 0; x < 640; x++)

 for(y = 0; y < 480; y++)

 new.pixel[x][y]

 = GrayScale(img.pixel[x][y]);

program

}

img

(a) Traditional program.

library

640

480

img (capsulated)

img.procPix(GrayScale);

procPix

100%

100%

program

(b) Program with RaVioli.

Fig. 1. Digital image processing.

are delivered from the requirement of quantitativeness on
computers. Hence, programmers have to manage resolutions in
their programs although resolutions are not required essentially
for vision. In other words, the presence of resolutions makes
programs unintuitive.

Generally, loop iterations are heavily used in video process-
ing programs. When converting a color image to grayscale,
for example, each pixel will be converted to grayscale in the
innermost iteration, and the process is repeated for every pixel
by loop nests as shown in Fig. 1(a). On the other hand, with
RaVioli, an image is encapsulated in an RV Image instance,
and this repeating process for all pixels is done by RaVioli
automatically, so programmers should only write a routine for
one pixel as shown in Fig. 1(b). GrayScale() in Fig. 1(b) is the
routine defined by the programmer. What programmer should
do are defining a function which processes one pixel and pass-
ing the function to one of the image instance’s public methods.
In this example, the method is procPix(). It is defined as a
higher-order method, and applies a function, which is passed
as its argument, to all pixels one after another. This framework
allows programmers to be released from resolutions and the
number of iterations. Not only procPix(), RaVioli also provides
some higher-order methods for several processing patterns as
shown below.

1) One-to-one mapping.
Processes one pixel and stores the result to the pixel.
Used for grayscale, binarization, and so on.

2) Many-to-one mapping.
Processes one pixel and its surrounding pixels, and
stores the result to the centric pixel. Used for emboss
filter, edge detection, and so on.

3) Many-to-many mapping.
Processes objective pixels or partial images and get some
value as the result. Used for template matching, and so
on.

These higher-order methods apply the process for a pixel
(or a partial image) to the entire image. But while writing
these image processing programs, programmers have to select
appropriate higher-order methods for required iteration pat-

1 Func Gray(img a){
2 p1@img a{
3 Ave = (p1.R + p1.G + p1.B) / 3;
4 p1.{R, G, B} = {Ave, Ave, Ave};
5 }
6 }(img a)

Fig. 2. A grayscale program.

terns, and use them. This will be a burden for the programmer.
Hence, this paper proposes a new programming language
which provides a more intuitive programming paradigm for
programmers.

III. CONCEPT OF THE PROGRAMMING LANGUAGE

In this section, the common format of the programming
language is explained.

A. Expression for Kernel Iterations

Generally, an image processing program has some kernel
loops each of which is for iterating a process for a component
part, such as a pixel or a small window. Therefore, with this
language, programmers only have to describe some routines
for the component parts and ranges where the routines are
applied repeatedly. Although this concept is similar to RaVioli,
programmers have to select a suitable higher-order method for
each routine when using RaVioli. Hence, this paper proposes
the following expression for describing a kernel loop with
specifying the processing entity and processing object, or
range.

Kernel Loop¶ ³
processing entity @ processing object {

kernel body
}µ ´

This allows programmers to describe any processing pat-
terns like ”pixel @ image” and specify the unit of the process
and the region where the process is applied repeatedly in
common format. Definition of data type is unnecessary and the
variables in the block are basically handled as local variables.

B. Language Specifications

The specifications of the language will be explained by
giving some specific examples of processing patterns discussed
in section II-B, and showing programs which are written in
the language.

1) One-to-One Mapping: The basic components of pro-
grams are definitions of the function name, the arguments, the
calculations and the return values. When defining a function
with this language, there should be ”Func” before function
name instead of the type of the return value. Fig. 2 shows
a grayscale program with the language. There are particular
variables such as IMAGE variable and PIXEL variable in the
language. These variables are associated with an RV Image

1 Func Edge detect(img a){
2 threshold = 127;
3 p1@img a{
4 tmp = <−1, −1>p1.R + <0, −1>p1.R + <1,− 1>p1.R
5 + <−1, 0>p1.R − 8 ∗ p1.R + <1, 0>p1.R
6 + <−1, 1>p1.R + <0, 1>p1.R + <1, 1>p1.R;
7 if(tmp > threshold) p1 = #black;
8 else p1 = #white;
9 }

10 }(img a)

Fig. 3. An edge detection program.

instance and an RV Pixel instance, which are explained in
section II-B. They are written in the formats as below.

PIXEL variable¶ ³
pn (n is an integer number)µ ´

IMAGE variable¶ ³
img a (a is a string of alphanumerics.)µ ´

At the 3rd line, the average of each value of RGB is
calculated, and the average is assigned to ”p1” at the 4th line.
The variable ”p1” represents a PIXEL variable. The red color
element of a PIXEL is represented by ”R” concatenated by
”.” with PIXEL, such as ”p1.R” at the 3rd line. Using a brace
enables to handle values as a tuple. An expression beginning
with ”img ” is an IMAGE variable to handle all the pixels
of the image and its information such as width and height.
The expression ”p1@img in” at the 2nd line means that the
processing object is referred as img in and the processing
entity p1 is the variable which represents an element of img in.
The process for p1, which is described in the function body,
is applied to each PIXEL element in the img in.

In this way, programmers can designate the processing
entity and object easily using these expressions. Furthermore,
the programmers need not to consider the iteration counts, or
the number of pixels in the image.

2) Many-to-One Mapping: Fig. 3 shows an edge detection
program written in this language. From the 4th line through
the 6th line, a value which is calculated by using p1 and its
circumferences is assigned to the variable tmp; the calculation
is subtracting eight times R value of p1 from the sum of R
values around p1. At the 7th and 8th line, if ”tmp” is larger
than ”threshold”, the color of p1 is set as black, otherwise as
white. The expression ”〈x, y〉” represents a set of coordinates,
where x and y are the integer numbers. Using this expression
allows programmers to handle relative coordinates. For exam-
ple, ”〈-1,-1〉p1” is an upper left pixel of the processing target
element p1. The expressions ”#black” and ”#white” will be
explained in next section.

3) Many-to-Many Mapping: Fig. 4 shows a template
matching program written in this language. From the 1st line
through the 3rd line, the variable declared in ”GLOBAL”
block is handled as a global variable and the other

1 GLOBAL{
2 img tp;
3 }
4

5 Func TPmatching(img a){
6 min = INT MAX;
7 [img tp]img window@img a{
8 (p1, p2)@(img window, img tp){
9 sum += abs(p1 − p2);

10 }
11 if(sum < min){
12 min = sum;
13 <x, y> = img window.{x, y};
14 }
15 sum = 0;
16 }
17 img a > writeBox(#red, <x, y>, [img tp]) > img b;
18 }(img b)

Fig. 4. A template matching program.

variables are handled as local variables. The expression
”[img tp]img window@img in” at the 7th line means that
processing entity is img window whose size is as same as the
IMAGE which is referred by a global variable img tp, and
processing object is img in. The difference between a partial
image img window and the global template image img tp is
calculated from the 8th line through the 10th line, and a point
where the difference is the smallest is searched for from the
11th line through the 14th line.

A special function ”writeBox” is applied to img a at the
17th line. Here, img a is input to writeBox() by the symbol
”〉”, and the result is output to img b. This function ”write-
Box” is a predefined function which draws a rectangle on an
image, and ”writeLine” is also a predefined function which
draws a straight line on an image. The synopses of these
functions are shown below.

Predefined functions.¶ ³
writeBox(#colorname, 〈x,y〉, [img a])

writeLine(#colorname, rho, theta)µ ´
With writeBox function, it is possible to draw a rectangle

which has size of the img a and the coordinate of the rectan-
gle’s upper left corner is 〈x,y〉. The writeLine function is used
in case of drawing a straight line by calculating the straight
line expression using rho and theta. Here, ”#colorname” means
the color of the rectangle or the straight line. It is common
to use the RGB model to express the color on computers,
but the RGB model is not intuitively for users. For example,
even if (R, G, B) is set as (D2, 69, 1E), users hardly
understand that this means brown immediately. Therefore, the
new language provides the COLOR variable for expressing the
colors intuitively.

COLOR variable.¶ ³
#white or #FFFµ ´

It is possible to describe the colors by name based on

1 Func main(file in, file tp, file out){
2 img in <= file in;
3 img out <= file in;
4 img in > TPmatching > img out;
5 img out => file out;
6 }

Fig. 5. Main function for the template matching program shown in Fig. 4.

1 int R Gray Ave; // ... (a)
2 void Gray loop0 (RV Pixel∗ p1){ // ... (b1)
3 R Gray Ave = ((p1−>getR()) + (p1−>getG()) + (p1−>getB())) / 3;
4 p1 −> setRGB(R Gray Ave, R Gray Ave, R Gray Ave);
5 }
6 void Gray (RV Image∗ img a){ // ... (b2)
7 R Gray Ave = 0;
8 img a −> procPix(Gray loop0);
9 }

10

11 RV Image∗ img in;
12 int main(int argc , char∗ argv []){
13 file .readBMP(argv[1],img in);
14 Gray(img in);
15 file .writeBMP(argv[2],img in) ;
16 return 0;
17 }

Fig. 6. A converted grayscale program.

CSS3 color module[13], or hexadecimal number of triple digits
after ”#”. For example, ”#white”, ”#ABC”, ”#123” is handled
as RGB values of (ff, ff, ff), (aa, bb, cc), (11, 22, 33) in
hexadecimal number respectively.

4) Miscellaneous Expressions: Fig. 5 shows the main func-
tion of the template matching program shown in Fig. 4.
The variables beginning with ”file ” are the arguments for
input/output files. At the 2nd and 3rd line, the input files are
read into IMAGE variables img in and img tp. At the 4th line,
a function ”TPmatching” is applied to the processing object
img in, and an output image img out is returned as the return
value of TPmatching function. At the 5th line, the img out is
written into the output file.

IV. IMPLEMENTATION OF THE TRANSLATOR

In this section, we propose a translator, which translates
a program written in the new language into both a program
which can be linked with RaVioli and a program which can
be linked with CUDA-supported RaVioli.

A. Translation into RaVioli Programs

Fig. 6 shows a RaVioli grayscale program which is con-
verted from a program written in the new language. Here, all
variables are declared as global variables with ” R (function
name) ” (a). The routine which is applied repeatedly to entire
images (b1) and the routine which is applied at once such
as initialization of variables (b2) are defined as different
functions. By receiving the function gray loop0, which is
defined at (b1), as the parameter of the higher-order method

Module file

(kernels.ptx)

Executable

C++ program

for RaVioli

C++ program

for RaVioli/CUDA

Kernel func.

(kernels.cu)

RaVioli/CUDA

library

NVCC CompilerNVCC Compiler

component func.

Program

in the new language

TranslatorTranslator

Object file

C++ CompilerC++ Compiler

Fig. 7. Compilation flow with translator.

procPix() in function (b2), the calculation by the function (b1)
is applied to the entire image ”img in”.

B. Translation into RaVioli/CUDA Programs

CUDA-supported RaVioli (RaVioli/CUDA)[11] can provide
an easy-to-use CUDA programming framework for developers.
The translator can also generate RaVioli/CUDA programs
from the programs which are written in the new language pro-
posed in this paper. The generator of RaVioli/CUDA program
is implemented as a postprocessor of the translator mentioned
in IV-A. Fig. 7 shows a compilation flow with the translator.

The translator converts a program in Fig. 6 further to
two program files; main.cpp for the host CPU and
kernels.cu for the GPU device. These program files are
compiled by C++ compiler and CUDA compiler nvcc, and
assembled to an executable. The results of this translation are
shown in Fig. 8 and Fig. 9.

In the main program, the invocation of procPix() in Fig. 6
is converted to cudaProcPix() in Fig. 8. A statement of
GetKernelHandler() is added in main() for getting a kernel
handler for the component function Gray(). RaCudaInit() and
RaCudaExit() are functions provided by RaVioli/CUDA for
CUDA device initialization and finalization respectively.

On the other hand in the kernel program, the component
function Gray() is converted to a kernel function. A kernel
function expresses a process for one thread. In Fig. 9, the
kernel function Gray() is defined as it processes one pixel on
one thread. The definition of Gray() also makes continuous
threads process continuous pixels by calculating indices. This
is for coalesced access of CUDA memories. Memory accesses
to the global memory by continuous sixteen threads in each
Block can be issued in parallel owing to this code conversion.

The translator searches for higher-order method invocations
through RaVioli programs, and generates associated code for
RaVioli/CUDA with converting component functions to kernel
functions. In this simple example program, there needs no

1 /∗ main.cpp ∗/
2 RV CudaDevice device;
3 int main(int argc , char∗ argv []){
4 RV Image image;
5 :
6 device .RaCudaInit () ; /∗ initialize device ∗/
7 CUfunction cuFunction;
8 device .GetKernelHundle(&cuFunction, ”Gray”);
9 image.cudaProcPix(&cuFunction);

10 :
11 device .RaCudaExit(); /∗ finalize device ∗/
12 }

Fig. 8. Main program translated from Fig. 6.

1 /∗ kernels .cu ∗/
2 extern ”C” global void
3 Gray(RV Pixel∗ idata , RV Pixel∗ odata, int width , int height){
4 int x = blockDim.x ∗ blockIdx.x + threadIdx .x ;
5 int y = blockDim.y ∗ blockIdx.y + threadIdx .y ;
6 RV Pixel p1;
7 if (x < width && y < height){
8 p1 = idata [y ∗ width + x];
9 int Ave = (p1.getR () + p1.getG() + p1.getB ()) / 3;

10 odata [y ∗ wid + x].setRGB(Ave, Ave, Ave);
11 }
12 }

Fig. 9. Kernel program translated from Fig. 6.

reduction operation for parallelization. However, in RaVioli
programs, whether reduction operations are required or not can
be easily detected, because any dependency between iterations
appears as an assignment to a global variable in the component
function. Detailed discussion about reduction operation in
RaVioli is described in [11].

Enumerating translation rules in detail is left out for want
of space, but there are additional functions of the translator as
follows.

Optimizing Data Transfers: Many of video processing
programs consist of multiple stages, and the stages can be
pipelined. Since transferring data between CPU and GPU on
each stage of the pipeline is redundant, the translator optimizes
these data transfers. In the output program generated by the
translator, the data are transferred from CPU to GPU only
once at the first stage (i.e. the first invocation of a higher-
order method), and the result is transferred from GPU to CPU
only once at the last stage.

Using Page-locked Memory: With CUDA, two types of
CPU host memory are available. The one is the heap memory,
and the other is the page-locked host memory. The page-
locked host memory is mapped into the address space of the
GPU device, and can be accessed directly. Moreover, data
copy between page-locked host memory and GPU can be fast
and asynchronous. The translator converts programs for using
page-locked memory automatically.

TABLE I
EVALUATION OF PROGRAM SIZE.

Programs Program Native RaVioli New
Size C++ Language

Grayscale lines 38 22 12
bytes 910 486 244

Emboss filter lines 153 26 15
bytes 4074 867 444

Template lines 114 50 21
matching bytes 3946 1175 430
Line lines 139 79 50
detection bytes 3518 2163 1084

V. EVALUATIONS

The new programming language and the translator described
in III and IV were evaluated with several image processing
programs.

A. Evaluation of Program Size

On programs with native C++, traditional RaVioli and the
new language, the program size are compared by linage and
bytes. TABLE I shows that the linage and bytes of typical four
programs written in the new language are smaller than that of
programs with native C++ and traditional RaVioli.

B. Evaluation of Readability

Binarization programs written in native C++, traditional
RaVioli and the new language are shown in Fig. 10, Fig. 11
and Fig. 12. The readability of a program in the new lan-
guage is compared with that of the programs with C++ and
RaVioli. Both RaVioli and the new language conceal the
resolutions and the number of components from programmers.
So, programmers can be released from resolutions and the
number of iterations. For applying the user-defined function
to all processing entities, programmers are required to select
an appropriate higher-order method with RaVioli; in this
program, the higher-order method is ”procPix.” But with the
new language, programmers can be unaware of it. As just
described, programmers only need to write essential processes,
and readability is increased.

C. Performance Evaluations

We have also evaluated the computation performance. The
evaluation environment is shown in TABLE II, and the eval-
uation results are shown in TABLE III. In TABLE III, C++
denotes programs with native C++, RaVioli denotes programs
with traditional RaVioli, Generated RaVioli denotes programs
with RaVioli translated from programs in the new language
and Generated RaVioli/CUDA denotes programs with CUDA-
supported RaVioli translated from the new language program.
The size of the image which was used for grayscale and
emboss filter programs was 512 × 512 pixels and for line
detection program was 450×540 pixels. For template matching
program, the base image has 395×372 pixels and the template
image has 70 × 72 pixels.

1 void Binary(Img∗ img){
2 int i , j , v , tmp;
3 for (i = 0; i < img −> height; i++){
4 for (j = 0; j < img −> width; j++){
5 v = getV(img −> D[i][j]);
6 if (v < 85) tmp = 255;
7 else tmp = 0;
8 img −> D[i][j].r = tmp;
9 img −> D[i][j].g = tmp;

10 img −> D[i][j].b = tmp;
11 }
12 }
13 }
14 Binary(&Image);

Fig. 10. A binarization program in native C++.

1 void Binary Pix(RV Pixel∗ p){
2 if ((p −> getV()) < 85) p −> setRGB(225, 225, 225);
3 else p −> setRGB(0, 0, 0);
4 }
5 Image −> procPix(Binary Pix);

Fig. 11. A binarization program with traditional RaVioli.

1 Func Binary(img a){
2 p1@img a{
3 if (p1.V < 85) p1 = #black;
4 else p1 = #white ;
5 }
6 }(img a)
7 img in > Binary > img out;

Fig. 12. A binarization program in the new language.

As we can see in TABLE III, there is little difference
between RaVioli and Generated RaVioli. This means that the
translator which converts a program in the new language into
RaVioli doesn’t output useless statements, and converts appro-
priately. Generated RaVioli/CUDA achieves performance gains
of 3.9-fold, 7.8-fold and 135.4-fold on grayscale, emboss filter
and template matching respectively, over traditional RaVioli
programs without rewriting programs. Typically on template
matching, Generated RaVioli/CUDA also achieves about 38.7-
fold speedup over C++.

The performance of Generated RaVioli/CUDA on the line
detection program is not evaluated, because the translator
does not support this type of program at present. The hough
transform in line detection is a little different from other
general image processing. Although both the input and output
of general image processing are images respectively, the input
of the hough transform is an image and the output is an array.
Hence, there is a case where an element of an array can be
written multiple values calculated from different coordinates.

TABLE II
EVALUATION ENVIRONMENT.

OS Fedora9
CPU Core2Quad

Frequency 2.83GHz
Memory 3GB

GPU GeForce GTX280
Number of multiprocessors 30

Number of cores (SP) 240
CUDA version 2.2 (Driver API)

Compute capability 1.3
Compiler gcc

Compile options -O3

TABLE III
EXECUTION TIME (MS).

Programs Native RaVioli Generated Generated
C++ RaVioli RaVioli/

CUDA
Grayscale 1.15 4.81 5.06 1.21
Emboss filter 4.77 10.15 9.87 1.30
Templ.matching 2425.65 8483.45 8173.30 62.62
Line detection 35.32 71.02 89.65 -

Therefore, a simple parallelization for this type of processing
causes data conflicts and incorrect results. If there is a data
dependency, some reduction operations have been necessary
to solve this problem. But in this case, the amount of memory
is insufficient for giving all arrays to each thread. This is why
the line detection program is unable to be converted to CUDA-
supported RaVioli program at present.

VI. CONCLUSIONS

This paper proposes a programming language which allows
programmers to write image processing intuitively. Generally,
an image processing program has some kernel loops each
of which is for iterating a process for a component part.
Programmers only need to describe some routines for the
component parts with this language. It allows programmers to
be unaware of pixels and resolutions. The routine is applied
to the entire image automatically through the higher-order
methods of RaVioli. RaVioli is a pseudo real-time video
processing library which conceals spatial/temporal resolutions
from programmers and changes resolutions automatically.
With the language proposed in this paper, image processing
programs can be described more intuitively than RaVioli
programs. In this paper, a translator is also proposed. The
translator converts the programs written in the new language
to RaVioli programs, and converts the translated RaVioli pro-
grams further to CUDA-supported RaVioli programs. With this
translator, several programs written in the new language such
as grayscale, template matching and line detection programs
are able to be converted to the programs with RaVioli and
CUDA-supported RaVioli. Automatic translation into CUDA-
supported RaVioli programs enables programmers to use
GPUs effectively without considering GPU architectures.

Possible improvement of this study is improving this lan-

guage to be able to handle more types of image/video process-
ing. Now, RaVioli has good writeability, and many programs
such as edge detection, circle detection, hough transform, and
so on can be written with RaVioli. But the new language
cannot describe all of these programs at the moment. In
addition, this language doesn’t correspond to description of
video image processing.

APPENDIX
AN EXAMPLE OF TEMPLATE MATCHING PROGRAM

Another example of code conversion by the translator is
shown in this appendix. The codes shown in Fig. 13 and
Fig. 14 are template matching programs which are generated
by the translator from the code in Fig. 4.

From the 8th line through the 10th line in Fig. 4 is con-
verted to the TPmatching Comp() in Fig. 14, and the function
TPmatching() is converted to the TPmatching kernel() in
Fig. 14.

In the main program shown in Fig. 13, TPmatching() is
defined. It gets kernel handlers for kernel functions, sets
up texture reference, and passes kernel functions to cud-
aProcBox(). The cudaProcBox() is one of the higher-order
methods of RV Image instance, and it is for applying a
component function repeatedly inside a certain box.

TPmatching() in Fig. 13 is only a wrapper function, and the
essence of TPmatching() is translated to TPmatching kernel()
in Fig. 14. It calculatess the sum of absolute differences
by calling the function TPmatching Comp(). Now, TPmatch-
ing Comp() is called from device code. Hence, device
qualifier is added to TPmatching Comp().

Thread-local results are stored in the data4reduction[] array.
In Fig. 4, the variable sum is overwritten in the function
TPmatching(). This lets the translator know that there needs a
reduction operation for the variable sum. Hence, the code for
reduction shown in Fig. 15 is also generated.

The code in Fig. 15 reduces the thread-local results. Gather-
ing the data over threads on shared memory in each Block, the
minimum value and its coordination is settled, and the process
is repeated over all Blocks by for loop.

ACKNOWLEDGMENT

This research was partially supported by a Grant-in-Aid for
Young Scientists (B), #21700028, 2009, from the Ministry of
Education, Science, Sports and Culture of Japan.

REFERENCES

[1] NVIDIA Corp., NVIDIA CUDA Programming Guide, 2nd ed., Jun. 2008.
[2] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise

Computations,” in Proceedings of the IEEE, vol. 82, Jan. 1994, pp. 83–
94.

[3] H. Yoshimoto, N. Date, D. Arita, and R. Taniguchi, “Confidence-Driven
Architecture for Real-time Vision Processing and Its Application to
Efficient Vision-based Human Motion Sensing,” in Proc. of the 17th
Int’l. Conf. on Pattern Recognition (ICPR’04), vol. 1, 2004, pp. 736–
740.

[4] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With
the OpenCV Library. O’Reilly & Associates Inc, 2008.

[5] Open Source Computer Vision Library, Intel Corp., 2001.

1 #include ” ravioli .h”
2 #include ” cutil .h”
3

4 RV Cuda device;
5

6 CUtexref cuTexTPref; // texture reference for template image
7 CUarray d TPimage;
8 int3 result ;
9

10 void TPmatching(RV Image∗ image){
11 CUfunction cuFunction;
12 CUfunction cuFunction2;
13 device .GetKernelHundle(&cuFunction, ”TPmatching kernel”);
14 device .GetKernelHundle(&cuFunction2, ” reduction kernel”) ;
15 cuParamSetTexRef(cuFunction,
16 CU PARAM TR DEFAULT,
17 cuTexTPref) ;
18 result = image−>cudaProcBox(&cuFunction,
19 tp image−>Width,
20 tp image−>Height,
21 &cuFunction2);
22 }
23

24 int main(int argc , char∗ argv []){
25 RV Image∗ input image = new RV Image(argv[1]);
26 RV Image∗ tp image = new RV Image(argv[2]);
27

28 device .RaCudaInit () ;
29 device .GetTexrefHundle(&cuTexTPref,”texTP”);
30

31 tp image−>TexRefSetImage(&d TPimage, &cuTexTPref);
32 TPmatching(input image);
33 cutilDrvSafeCall (cuArrayDestroy(d TPimage));
34 image−>writerect(result .x , result .y) ;
35

36 device .RaCudaExit();
37 return 0;
38 }

Fig. 13. Main program translated from RaVioli program.

[6] J. Fung, S. Mann, and C. Aimone, “OpenVIDIA: Parallel GPU Com-
puter Vision,” in Proc. the ACM Multimedia 2005. ACM, 2005, pp.
849–852.

[7] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan, “GpuCV:
An Opensource GPU-Accelerated Framework for Image Processing and
Computer Vision,” in Proc. 16th ACM international conference on
Multimedia. ACM, 2008, pp. 1089–1092.

[8] R. J. Rost, OpenGL Shading Language. Addison-Wesley professional,
2004.

[9] P. Babenko and M. Shah, “MinGPU: a Minimin GPU Library for
Computer Vision,” IEEE Journal of Real-Time Image Processing, vol. 3,
no. 4, pp. 255–268, 2008.

[10] J. Segawa and T. Kanai, “The Array Processing Language and the Paral-
lel Execution Method for Multicore Platforms,” The First International
Symposium on Information and Computer Elements, 2007.

[11] K. Kondo, T. Inaba, H. Sakurai, M. Ohno, T. Tsumura, and H. Matsuo,
“RaVioli: a GPU Supported High-Level Pseudo Real-time Video Pro-
cessing Library,” in Communication Papers Proc. 19th Int’l Conf. on
Computer Graphics, Visualization and Computer Vision (WSCG2011),
Jan. 2011, pp. 39–48.

[12] H. Sakurai, M. Ohno, T. Tsumura, and H. Matsuo, “RaVioli: a Parallel
Video Processing Library with Auto Resolution Adjustability,” in Proc.
IADIS Int’l. Conf. Applied Computing 2009, vol. 1, Nov. 2009, pp. 321–
329.

[13] T. Çelik, C. Lilley, and L. D. Baron, “CSS Color Module Level 3,”
W3C, Tech. Rep., Jun. 2011.

1 texture<int, 2, cudaReadModeElementType> texTP;
2 device int TPmatching Comp(int∗ idata, int wid, int hei ,
3 int widBox, int heiBox, int x , int y){
4 int sum = 0;
5 int p1, p2;
6 for (int j = 0; j < heiBox; j++){
7 for (int i = 0; i < widBox; i++){
8 p1 = idata [(y + j) ∗ w + (x + i)];
9 p2 = tex2D(texTP, i , j) ;

10 sum += absDiff(p1, p2) ;
11 }
12 }
13 return sum;
14 }
15

16 extern ”C”
17 global void
18 TPmatching kernel(int∗ idata , int4∗ data4reduction ,
19 int wid, int hei , int widBox, int heiBox){
20 int x = blockDim.x ∗ blockIdx.x + threadIdx .x ;
21 int y = blockDim.y ∗ blockIdx.y + threadIdx .y ;
22 int incX = gridDim.x ∗ blockDim.x;
23 int incY = gridDim.y ∗ blockDim.y;
24 int min = INT MAX;
25 for (int j = y; j < (hei − heiTP); j += incY){
26 for (int i = x; i < (wid − widBox); i += incX){
27 int sum = TPmatchi Comp(idata, wid, hei, widBox, heiTP, i , j) ;
28 if (sum < min){
29 data4reduction[y ∗ 256 + x].z = sum;
30 data4reduction[y ∗ 256 + x].x = i ;
31 data4reduction[y ∗ 256 + x].y = j ;
32 }
33 }
34 }
35 }

Fig. 14. Kernel module program translated from RaVioli program.

1 extern ”C”
2 global void
3 reduction kernel (int4∗ data4reduction , int4∗ g odata){
4 shared int sdatax [256], sdatay [256], sdataz [256];
5

6 unsigned int tid = threadIdx .x ;
7 unsigned int i = blockIdx .x ∗ blockDim.x + threadIdx .x ;
8 sdatax[tid] = data4reduction[i].x ;
9 sdatay[tid] = data4reduction[i].y ;

10 sdataz [tid] = data4reduction[i].z ;
11 syncthreads () ;
12

13 for (unsigned int s = blockDim.x / 2; s > 0;s >>= 1){
14 if (tid < s){
15 if (sdataz [tid] > sdataz[tid + s]){
16 sdatax[tid] = sdatax[tid + s];
17 sdatay[tid] = sdatay[tid + s];
18 sdataz [tid] = sdataz [tid + s];
19 }
20 }
21 syncthreads () ;
22 }
23 if (tid == 0){
24 g odata[blockIdx .x].x = sdatax [0];
25 g odata[blockIdx .x].y = sdatay [0];
26 g odata[blockIdx .x].z = sdataz [0];
27 }
28 }

Fig. 15. Reduction operations generated from Fig. 4.

