
Tiling with Different Spatial Resolutions for Pseudo
Real-Time Video Processing Library RaVioli

Katsuhiko KONDO∗, Ami ONO∗, Takafumi INABA∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—The performance of general purpose computers is
increasing rapidly, and now they are capable of running video
processing applications. However, on general purpose operating
systems, real-time video processing is still difficult because there
is no guarantee that enough CPU resources can surely be
provided. A pseudo real-time video processing library RaVioli
has been proposed for solving this issue. RaVioli conceals two
resolutions, frame rate and number of pixels, from programmers
and provides a dynamic and transparent resolution adjustability.
Using RaVioli, pseudo real-time video processing can be achieved
easily, but output precision may be roughened for reducing
processing load. To prevent this situation, this paper proposes a
method for automatically dividing whole video frame into several
subframes, or tiles, and changing the resolutions of each tile
individually. We have implemented the method on RaVioli and
have made some evaluations with a sample program. The result
shows that the proposed method can keep the resolution of video
frames higher than traditional RaVioli.

I. INTRODUCTION

Real-time video processing applications such as surveillance
systems, smoke detection systems or automatic vehicle col-
lision avoidance systems are increasingly popular and now
in demand. Therefore, the demand of the systems, which
highly requires such real-time video processing, is rapidly
increasing. Furthermore, the processors for general-purpose
computers have been developed drastically. The performance
of the processors has been improved, and the cost has been
reduced. Therefore, it is also expected that the performance
improvement and the cost reduction will promote real-time
video processing on the general-purpose computers and op-
erating systems. In spite of the advances of the general-
purpose processors, it is difficult to realize the real-time video
processing on general-purpose operating systems, because it
should keep a certain output framerate. The main reasons for
the difficulty are the fluctuations in the computation load of
each frame and in the amount of the available CPU resource.

To solve this problem, we have proposed a high-level video
processing library RaVioli (Resolution-Adaptable Video and
Image Operating Library)[1], [2] which guarantees pseudo
real-time processing on general-purpose computing systems.
RaVioli can regulate the throughput rate by automatically
modifying spatial resolution and frame rate according to CPU
usage and load. For such dynamical modification of the
resolutions, a programming fashion which is independent of
the resolutions is required. RaVioli conceals two resolutions,

frame rate and the number of pixels, from programmers for
changing the resolutions at run-time. It enables RaVioli to
exclude the concept of resolutions from video processing
programming, and developers can write video processing
programs more intuitively.

With RaVioli, developers can implement real-time process-
ing without considering the fluctuations in the computation
load of each frame and the amount of the available CPU
resource, but sometimes the output precision may be too
much roughened. This occurs due to reducing resolutions for
load-adjustment, and it is difficult to ensure keeping output
precision high. However, developers expect the input image
to be processed with as possible as high resolutions.

In this paper, we propose a new model of load-adjustment
by tiling with different spatial resolutions. It divides the whole
image into several tiles, and roughens the spatial resolution of
each tile according to how important the region enclosed in
the tile is. It can reduce the total amount of the computation
load, and the spatial resolution of the region which should be
processed precisely may be prevented from being roughened.
To achieve this, we have implemented a method for automati-
cally dividing whole video frames into several subframes and
changing each spatial resolution individually on RaVioli.

II. RELATED WORKS

A. Real-Time Video Processing

So far, several real-time video processing applications have
been developed. For example, Garcia-Martin et al.[3] have
presented a moving people detection for surveillance video
systems. Kim et al.[4] have proposed a method for early smoke
detection. Lin et al.[5] have presented a real-time eye detection
algorithm.

For such a real-time video processing, the scheduling of
image processing and adjusting the processing load are very
important. Some scheduling methods for image processing
have been developed. Lee et al.[6] have proposed a static
scheduling scheme for optimizing the parallel time of image
processing operations involving multiple stages, loops, and
data dependent operations. Although this scheduling method
can reduce parallel execution time significantly, it does not
ensure that image processing operations can be processed in a
given constant time. Kywe et al.[7] have proposed an adaptive
scheduling method using anytime algorithm, under such a

tsumura
テキストボックス
This paper is author’s private version of the paper published as follows:
Proc. of 7th Int'l Conf. on Signal-Image Technology and Internet-Based Systems (SITIS2011), pp.253–262
Copyright (C) 2011 IEEE
DOI: 10.1109/SITIS.2011.25

condition that the processing time is restricted in the duration
of one frame. With the scheduling technique, the maximum
performance can be achieved in the restricted time. However,
it is necessary to modify conventional image processing algo-
rithms to anytime algorithmic image processing.

On the other hand, some methods for adjusting the pro-
cessing load also have been developed. Writing multiple
routines with different algorithms has been the most-used
solution for the load adjustment. One example is the imprecise
computation model (ICM)[8], [9]. In this model, computation
accuracy varies corresponding to the given computation time
limit. With the confidence-driven architecture, which is based
on the ICM, developers have to troublesomely implement
multiple routines with different algorithms and different loads,
and the confidence-driven architecture selects suitable routine
dynamically and empirically among them.

A frame skipping method, one of the other solutions, has
been proposed in [10]. This is based on the fact that not all
frames are equally important for the overall video quality.
If there is not enough resources for fully processing the
incoming video, the processing of less essential frames is
omitted according to a quality-aware frame skipping rule.
Another solution also has been used in the eye detection[5]. In
the detection algorithm, by adjusting the scale to enlarge the
frame, the detection speed can be increased. Here, the scale
refers to the zoom scale of the frame. After the detection in
each frame, the scale is automatically changed according to
the area of detected regions. These two studies are similar
to RaVioli, however, RaVioli can apply both solutions to any
video processing applications automatically.

B. Image/Video Processing Libraries and Languages

On the other hand, many image/video processing li-
braries have been developed. For example, VIGRA[11],
OpenCV[12], [13], OpenIP[14] and Pandore[15] are well-
known image/video processing libraries. Adopting template
techniques similar to the C++ STL, VIGRA allows developers
to easily adapt given components to their programs. OpenCV
provides many typical image/video processing algorithms as
C functions or C++ methods. OpenIP provides a set of
interoperable, open source libraries, satisfying the demands of
image processing and computer vision in education, research
and industry, as well. Pandore provides a set of executable
image processing operators. It is dedicated to image process-
ing experts because skills on image processing operations
are needed to use this library. These libraries provide high-
level descriptivity of image/video processing, but adjusting
computation load is difficult to be implemented with them.

Some programming languages for image processing
also have been developed. A loopless image processing
language[16], for example, allows developers to implement
image processing for embedded devices without any knowl-
edge about the processors or memory architectures. With this
language, developers can operate arrays without using loops
in programs with some special operators. However, developers
have to write programs with a formula editor and consider

array sizes. A whole image processing language called picture
processing languages (PPL)[17] is also developed. The general
idea of PPL is to encapsulate image processing algorithms.
Thus, programmers do not have to deal with each individual
pixel when implementing image processing algorithms, and
this enables programmers, who know little about digital image
processing, to write image processing programs. Although
PPL incorporates common image processing algorithms, de-
velopers should extend the PPL if they want to use a new
image processing algorithm. Using the API provided by PPL,
developers can add more customized functions or methods,
however, it is not easy for the end user.

The approach of the library RaVioli[1], [2] is completely
different from existing computation models or image/video
processing libraries and languages. RaVioli allows program-
mers to be unaware of the existence of pixels and frames
through their video processing programming. Concealing pix-
els and frames from programmers, RaVioli can change spa-
tial/temporal resolutions and can adjust processing load dy-
namically and automatically.

III. OVERVIEW OF RAVIOLI

A. Abstraction of Video Processing

RaVioli proposes a new programming paradigm with which
programmers can write video processing applications intu-
itively. RaVioli conceals spatial resolution (pixel rate) and
temporal resolution (frame rate) of a video from programmers.
We human beings naturally have no concept of resolutions
through our visual recognition. For example, we can recognize
object motion in our view without any pixel or frame. How-
ever, pixels and frames are indispensable for motion object
detection programs on computer systems.

For example, motion object detection programs are some-
times implemented by using a block matching algorithm,
which searches for the most similar block between current
window and previous one. The similarity between image win-
dows will be calculated by SAD (sum of absolute differences)
or another alternative method, and the method should be im-
plemented by cumulative pixel value differences. Resolutions
are delivered from the requirement of quantitativeness on
computers. Hence, developers have to manage resolutions in
their programs although resolutions are not required essentially
for vision. In other words, the presence of resolutions makes
video processing programs unintuitive.

Generally, loop iterations are heavily used in video process-
ing programs. When converting a color image to grayscale,
for example, each pixel will be converted to grayscale in
innermost iteration, and the process is repeated for every
pixels by loop nests as shown in Fig. 1(a). On the other
hand, with RaVioli, an image is encapsulated in an RV Image
instance, and this repetition for all pixels is done by RaVioli
automatically, so developers should only write a routine for
one pixel as shown in Fig. 1(b). GrayScale() in Fig. 1(b) is the
routine defined by the developer. What developer should do are
defining a function which processes one pixel and passing the
function to one of the image instance’s public methods. In this

640

480

for(x = 0; x < 640; x++)

 for(y = 0; y < 480; y++)

 new.pixel[x][y]

 = GrayScale(img.pixel[x][y]);

program

}

img

(a) Traditional program.

library

640

480

img (capsulated)

img.procPix(GrayScale);

procPix

100%

100%

program

(b) Program with RaVioli.

Fig. 1. Digital image processing.

example, the method is procPix(), which is defined as a higher-
order method of the RV Image class. It applies a function
passed as its argument to all pixels in the RV Image instance
one after another. This framework allows developers to be re-
leased from resolutions and the number of iterations. Not only
procPix(), RaVioli also provides some higher-order methods
for several processing patterns; such as template matching, k-
neighbor processing, and so on. As same as images, videos
are also encapsulated in RV Streaming instances in RaVioli.
Frames, the components of an RV Streaming instance, are
concealed from developers. An RV Streaming instance also
has several higher-order methods. Developers should only
define a component function, which manages one frame, and
pass the function to an appropriate higher-order method for
video processing.

B. Self-Adjustment of Computation Load

RaVioli can dynamically change video resolutions consider-
ing processing load. RaVioli periodically compares the frame
capturing interval and the processing time for one frame. When
the processing time becomes larger than the capture interval,
RaVioli considers it is overloaded and reduces resolutions.
There are two resolutions; spatial resolution and temporal
resolution in videos. Spatial resolution refers the number of
pixels contained in each frame, and temporal resolution refers
the frame rate. RaVioli applies component functions to frames
or pixels skipping on a certain stride in higher-order methods
mentioned above. Roughening resolutions can be done by
raising the stride value, and it leads to decreasing the compu-
tation load. Fig. 2(a) shows which pixels are processed when
spatial stride increases, and Fig. 2(b) shows which frames are
processed when temporal stride increases.

Priorities can be specified for telling RaVioli which resolu-
tion (spatial or temporal) should be kept. In a real-time video
application, top priority will be given to temporal resolution,
and RaVioli reduces spatial resolution. In other applications
such as face authentication, top priority will be given to spatial
resolution, and RaVioli reduces temporal one. What developers
should do for load adjustment is only specifying priorities.

SS = 1 SS = 2 SS = 3

: pixels processed
SS: spatial stride

(a) Spatial resolution.

frames processed

ST = 1 ST = 2 ST = 3

ST: temporal stride

(b) Temporal resolution.

Fig. 2. Resolution changes.

The resolution priority is specified by a tuple of two values
(PS, PT) called a priority set. PS represents the priority of
spatial resolution, and PT represents the priority of temporal
resolution. When (PS, PT) = (3, 7) is specified, the priority
ratio of PS and PT is recognized as 3:7, and RaVioli manages
to keep spatial stride and temporal stride in the ratio of 7:3.
Therefore a video processing application, which fulfills the
performance demand and realizes real-time processing, can
be easily implemented.

This algorithm for reducing resolutions is very simple
and naive. However, this simplicity is very important. Many
complement algorithms such as bi-linear, hyper-cubic, and so
on are well known and they can be used. However, notice
that the function of changing resolutions of RaVioli aims
at reducing calculations. Adding calculations for changing
resolutions makes no sense.

An application written with RaVioli can achieve real-time
processing without considering the fluctuations in the com-
putation load of each frame and the amount of the available
CPU resource, but sometimes the output will have low qual-
ity. Although this result occurs due to reducing resolutions,
developers expect the input image to be processed with high
resolutions. For this problem, developers already can control
the inconvenience from quality loss by defining priority set
appropriately. The resolution which is given top priority can
be kept relatively high. On the other hand, the other resolution
is roughened a lot when computation load is high. Thus this
remains as a problem for RaVioli.

IV. TILING WITH DIFFERENT SPATIAL RESOLUTIONS

A. Outline of a New Load-Adjustment Model

As described in III-B, RaVioli achieves load self-adjustment
by changing resolutions. However, there is a limit on reducing
resolutions. If an input frame is processed with drastically
roughened spatial resolution by RaVioli, the output may not be
the result which developers expect. To prevent this situation,
this paper proposes a new model of load-adjustment which
focuses on the characteristics of input video frames in real-
time video processing.

In real-time video processing, input video frames are cap-
tured and processed with a constant time interval, but not
all frames need to be processed precisely. In a real-time
intruder detection system, for example, if there is no motion
object in an input video frame, the changeless frame is not
necessary to be processed precisely. Even when there are
some motion objects in a frame, most part of the frame
should be changeless. Such a part is not also necessary to be
processed precisely. Similarly, the parts which do not have
to be processed precisely would be found in many other
real-time video processing applications. Processing such parts
precisely leads to waste of the CPU resources. When enough
CPU resources cannot be provided, RaVioli tries to adjust
processing loads by roughening the resolutions, so processing
these useless parts leads to low resolution all around the frame.

Hence, this paper proposes a new model, with which each
input video frame is divided into several subframes, and the
spatial resolution of each subframe is changed individually
based on whether the subframe needs to be processed pre-
cisely. Besides the spatial stride of the whole frame, the
new RaVioli handles the spatial strides of each subframe
individually. The spatial stride for the whole frame is used as
for subframes which need to be processed precisely. We call
this base stride. For the other subframes, RaVioli manages
another greater stride value than the base stride. We call this
rough stride. In this way, it is possible to reduce wasted
processing, and RaVioli can achieve real-time video processing
without excessively roughening resolutions.

B. Processing Model

Now, we will illustrate the new processing model with a
surveillance application, and compare the new model to the
traditional processing model of RaVioli. How both surveil-
lance applications based on the traditional and the new model
work is shown in Fig. 3. The input video stream is shown in
the upper part of Fig. 3. For ease of explanation, we focus on
four frames in the stream. The frames are labeled from #1 to
#4 according to the captured order. The output stream with
traditional RaVioli and that with the new model are shown in
the middle and the lower part of Fig. 3 respectively.

Suppose that RaVioli processes all frames of input video
stream in order not to miss intruders. Thus, RaVioli changes
only the spatial resolution for adjusting the processing load.

To begin with, let us see how a surveillance application
with the traditional model works. It is shown in the middle

Output
(traditional)

Input

Output
(proposal)

#1

#2#3
#1

#4Frame

#1#2#3#4

#4 #3 #2

time

time

time

keep
spatial resolution

spatial resolution
is roughened

Fig. 3. Surveillance application based on traditional RaVioli and new RaVioli.

part of Fig. 3. The traditional model tries to process the all
input video frames with as possible as high spatial resolution,
so even the frame #1, where there is no change, is processed
precisely. If the amount of the available CPU resource de-
creases when processing the frame #1, the next frame #2 is
processed with rougher spatial resolution. Because RaVioli
keeps on incrementing the spatial stride while the processing
time is larger than the capture interval, roughening the spatial
resolution often continues through several input video frames.
In this example, the frame #3 and #4 is processed with
roughened spatial resolution, and it is difficult to detect a
intruder precisely because of low image quality.

On the other hand, in the new model, each input video frame
is divided into several subframes, or tiles, in accordance with
the parameter defined by developers. Then, RaVioli determines
whether each tile needs to be processed precisely. The base
stride is used for the tiles each of which covers some variable
region, and the rough stride is used for the other tiles which
have no changes in them.

Now, let us see how a surveillance application with the new
tiling model works. It is shown in the lower part of Fig. 3.
In this figure, vertical and horizontal dashed lines in a frame
represent borderlines of each tile. This example shows the case
where the developer indicates that each video frame should
be divided into 3× 3 tiles. Unlike the traditional RaVioli, the
new tiling model applies the rough stride to the tiles which
need not to be processed precisely. Thus, the total amount
of the computation load can be reduced. Therefore, even if
the amount of the available CPU resource decreases, the base
stride can be prevented from being drastically roughened.
When processing the frame #4, the left-middle and the left-
lower tiles where a prowling intruder is captured are decided
to be processed precisely, and the base stride is used for
them. The base stride with the new model will be smaller
than the spatial stride for the frame #4 with the traditional

Spatial
Stride

RV_Image

Temporal
Stride

Image Data

procPix

procNbr

領域の開始座標

領域の幅・高さ

判定関数へ

のポインタ

時間解像度

ストライド

空間解像度

ストライド

画像情報へ

のポインタ

RV_TileImage

領域の開始座標

領域の幅・高さ

判定関数へ

のポインタ

時間解像度

ストライド

空間解像度

ストライド

画像情報へ

のポインタ

RV_TileImage

領域の開始座標

領域の幅・高さ

判定関数へ

のポインタ

時間解像度

ストライド

空間解像度

ストライド

画像情報へ

のポインタ

RV_TileImage

Starting
Coordinates

Width
of the tile

Pointer to
Condition Func.

Spatial
Stride

Temporal
Stride

Pointer to
Image Data

RV_TileImage

procPix

procNbr

Width
of the image

Height
of the tile

Height
of the image

Fig. 4. Outline of RV TileImage.

RaVioli, because the new model can reduce the computation
load during the frame #1 through to the frame #3. Thus, it is
possible to detect the intruder more precisely.

As described above, the new model enables RaVioli to
reduce the total computation load by roughening the spatial
resolution of the region which do not have to be processed
precisely. Therefore, the spatial resolution of the region which
should be processed precisely can be prevented from being
drastically roughened.

V. IMPLEMENTATION

In this section, an implementation for the tiling model with
different spatial resolutions will be described. First, a new
class RV TileImage which encapsulates a divided subframe
will be described. Next, modification for higher-order methods
of RV Image class will be described, and the function for
deciding whether a subframe needs to be processed precisely
will be described. We call this function condition function.
Finally, the flow of image processing with the new model will
be described.

A. RV TileImage Class

In the new model, each video frame is divided equally in
order to change the spatial resolution of each subframe, or tile,
individually. To accomplish this, a new class RV TileImage
which represents a divided tile is implemented on RaVioli.
The outline of RV TileImage class is shown in Fig. 4. Each
RV TileImage instance is associated with an RV Image in-
stance which it belongs to. As shown in Fig. 4, an RV Image
instance has width and height of the image, both spatial
and temporal stride, space for holding image data, and some
higher-order methods as its member. On the other hand,
an RV TileImage instance has width and height of the tile,
both spatial and temporal stride, some higher-order methods,
starting coordinates which are the coordinates of the upper-left
of the tile, and a pointer to a condition function as its member.
Instead of holding pixel data, RV TileImage instances have a
pointer to the space for image data which is allocated by its
associated RV Image instance.

When a video frame is processed with the new model,
RV TileImage instances are constructed as many as number of

(a) procPix, procImgComp. (b) procNeighbor.

Fig. 5. Tiling in several higher-order methods.

tiles. Each instance processes its responsible region in a video
frame, so whole of the frame is processed properly. A region
which is processed by an RV TileImage instance is defined
in terms of the starting coordinates, width and height of the
tile held by the RV TileImage instance. An RV TileImage
instance applies a component function repeatedly by means of
a suitable higher-order method as same as an RV Image in-
stance in the traditional RaVioli. In this way an RV TileImage
instance processes the corresponding region of image data
which is held by an RV Image instance.

B. Higher-order Methods

The new model should be implemented so that develop-
ers do not have to rewrite component functions which are
already written for the traditional RaVioli. Therefore, when an
RV Image instance applies a component function to its video
frame, the instance should invoke RV TileImage instances’
higher-order methods instead of executing its own.

Now, we have modified RV Image instance’s higher-order
methods. For changing the spatial resolution of each tile
individually, an RV Image instance creates RV TileImage
instances as many as the number of tiles and processes
whole frame by means of several RV TileImage instances as
described above.

The processing patterns of higher-order methods are differ-
ent each other such as point processing, k-neighbor processing,
template matching, and so on. Therefore, the size of region,
especially the overlap width, for one RV TileImage instance
is different among higher-order methods. Thus, the way of
dividing whole frame into several tiles should be different in
each higher-order method. Now, we will show some represen-
tative higher-order methods, and explain how a frame should
be divided for the methods. In the following descriptions, it is
assumed that a video frame is divided into four(2 × 2) tiles.

procPix(void(*CF)(RV Pixel *P))
This higher-order method receives a pointer to a
component function CF which processes one pixel
P and applies it to all pixels one after another. Thus,
a video frame is divided into four tiles simply as
shown in Fig. 5(a). Here, in Fig. 5(a), C, W and H
represent the starting coordinates, the width and the
height of the tile respectively.

procImgComp(void(*CF)(RV Pixel *P, Pc), RV Image Ic)

This higher-order method receives a pointer to a
component function CF which processes one pixel
P, using the corresponding pixel Pc in a image Ic as
reference and applies it to all pixels one after another.
This method can be used for calculating frame-to-
frame difference, calculating degree of similarity be-
tween two frames, and so on. Because the processing
pattern of procImgComp is same as that of procPix(),
two video frames are divided as shown in Fig. 5(a).

procNeighbor(void(*CF)(RV Pixel *P, *Pnbr, int k))
This higher-order method receives a pointer to a
component function CF which processes one pixel
P, using an array of RV Pixel instance Pnbr which
contains k nearest neighbor pixels (k=8) as reference,
and applies it to all pixels one after another. With
this method, a video frame is divided as shown in
Fig. 5(b). The region #1 contains the top left quarter
of the image and one pixel margin on the right and
lower side of the region. Similarly, the region #2,
#3 and #4 contain each quarter image accompanying
with its one pixel margin on the left and lower
side, right and upper side, and left and upper side
respectively.

C. Condition Function

To change resolutions of all tiles automatically and individ-
ually, each RV TileImage instance needs to determine whether
the tile should be processed precisely or not. In the new
model, condition functions are applied to video frames using
the processing mechanism as same as component functions.
Developers can define a condition function which determines
whether a tile needs to be processed precisely, and pass the
function to an RV Streaming instance through its higher-order
method. RaVioli uses this function for changing spatial reso-
lution of each tile. Furthermore, RaVioli provides developers
with some predefined condition functions. Condition functions
should return 1 if the tile needs to be processed precisely,
otherwise return 0.

Now, we show a sample video processing program im-
plemented with the new RaVioli model in Fig. 6. In this
sample program, the component functions pixF, imgF and
a condition function FleshDetect are defined by the de-
veloper. In main function, as a first step, an RV Streaming
instance video is declared at the line 9. Then, the priority
set is designated by means of the setPriority method
of the RV Streaming instance at the line 10. The instance
video changes both spatial and temporal resolutions ac-
cording to the value of the priority set. Next, a condition
function should be defined and passed to the higher-order
method setCondFunc. Now, the specifications of condition
functions and a higher-order method setCondFunc are as
follows.

void setCondFunc(int(*CdF)(RV Image *Fc))
void setCondFunc(int(*CdF2)(RV Image *Fc,*Fp))

This method receives a pointer to a condition func-
tion CdF which uses the current processing frame Fc,

1 void pixF(RV Pixel ∗pix){...}
2 void imgF(RV Image ∗img){
3 img−>procPix(pixF); // a higher−order method
4 }
5 int FleshDetect(RV Image ∗Curr, RV Image ∗Prev){
6 /∗ determine whether precisely or not ∗/
7 }
8 int main(int argc, char∗ argv[]){
9 RV Streaming video;

10 video.setPriority(7, 3); // set priority set
11 video.setCondFunc(FreshDetect); // set condition func.
12 // video.setCondFunc(FrameDiff); // select condition func.
13 video.setTileNum(3, 4); // divide into 3x4 tiles
14 video.procStream(imgF); // higher−order method for streaming
15 }

Fig. 6. Description of new RaVioli program.

or a pointer to a condition function CdF2 which uses
both Fc and the previous frame Fp. This assigns the
function pointer to RV TileImage instance’s pointer
variable shown in Fig. 4.

In this sample program, the programmer-defined condition
function FleshDetect is passed to the higher-order method
setCondFunc at the line 11. A predefined function can be
designated instead of programmer-defined condition function.
FrameDiff in line 12, which is commented out, is one
of the predifined condition functions. It returns 1 if the
difference between the tiles in adjacent frames is greater than
a certain threshold, otherwise returns 0. Then, how many
tiles the whole frame is divided into is designated at the
line 13. The component function imgF, which is applied to
all video frames, is passed to video’s higher-order method
procStream at the line 14. In the imgF, the higher-order
method procPix() is invoked at the line 3. In the method
procPix(), each RV TileImage instance changes the spatial
stride by means of the condition function and processes the
corresponding region with the spatial stride. As described
above, the process for a video frame can be applied to all
frames.

D. Image Processing Flow

This subsection shows how a video processing program
runs with the new model of RaVioli. First, a video frame
is divided into several tiles. The number of tiles is defined
by developers. Now, suppose that the number of tiles is
designated as 2×2. In this case, four RV TileImage instances
are constructed to process the corresponding tile individually.
This is illustrated in the left side of Fig. 7. Each RV TileImage
instance determines the tile should be processed with whether
base stride or rough stride, and processes the tile with the
appropriate spatial stride as shown in the center of Fig. 7. In
this figure, each square represents a pixel, and a filled square
represents a processed pixel. The case, where upper-left and
lower-right tiles are processed with base stride and upper-right
and lower-left tiles are processed with rough stride, is shown
in this figure. The value of rough stride is now 2. Therefore,

Fig. 7. Image Processing Flow.

TABLE I
EVALUATION ENVIRONMENT.

OS Solaris10
CPU Intel Core2 Ex. Quad

Frequency 3.0GHz
Memory 8GB
Compiler Sun Studio 12 (Sun C++ 5.9)

Compile options -fast

as you can see, there are some unprocessed pixels in upper-
right and lower-left tiles. For these unprocessed pixels, the
result of a left or upper or upper-left neighbor pixel is used
for output instead of them. Thus, the output of the whole video
frame is as shown in the right side of Fig. 7. By processing a
video frame along this flow, a load-adjustment by tiling with
different spatial resolutions is achieved.

VI. EVALUATIONS

We evaluated the new tiling model proposed in this paper.
The evaluation environment is shown in TABLE I. We used a
grayscale program for this evaluation. The input video stream
is composed of 50 frames and the spatial resolution is 320 ×
240. In this stream, there are changes in the input frames from
the 30th frame through the 34th. Furthermore, from 20th frame
to 40th frame, we executed another program which has heavy
computation load for making a situation where available CPU
resource decreases drastically. We have evaluated following
three models,
(B) Traditional RaVioli.
(T3,4) Tiling model using FrameDiff described in V-C as a

condition function, and a frame is divided into
3 × 4 tiles.

(T8,8) Tiling model as same as (T3,4) but with 8 × 8 tiles.
The fluctuation of the base stride is shown in Fig. 8. As you

can see, tiling model (T3,4) and (T8,8) can keep base stride
1 or 2 lower than model (B) from 30th to 34th frame. The
output images at the 33rd frame are shown in Fig. 9. Fig. 9(a),
Fig. 9(b) and Fig. 9(c) show the output image with model
(B), model (T3,4) and model (T8,8) respectively. With model
(B), the whole input image was processed with single spatial
resolution, and the region which should be processed precisely
was roughened as same as the other region. In contrast, with
the new models (T3,4) and (T8,8), the region where a person
moves was processed with finer spatial resolution than that for
the other region. Especially, with model (T8,8), more regions
are processed with rough stride than model (T3,4). Hence,

Fig. 8. Fluctuation of the spatial resolution.

model (T8,8) was able to keep the base stride lower than the
base stride of model (T3,4).

As we can see in Fig. 8 and Fig. 9, tiling model can
process the regions, where a person moves, with the base stride
properly, and the spatial stride for the region with model (T8,8)
is up to 2 times smaller than that with model (B). Therefore, it
is obvious that the region where a person moves is processed
precisely. Thus, the output precision of the region is highly
improved.

VII. CONCLUSIONS

In this paper, we proposed a new load-adjustment model by
tiling with different spatial resolutions for pseudo real-time
video processing library RaVioli. RaVioli changes resolutions
automatically for adapting to currently available CPU resource.
In the new tiling model, RaVioli divides whole video frame
into several tiles, and can change the spatial resolution of
each tile individually. Additionally, developers can use this
new model without rewriting component functions for the
traditional RaVioli. Through an evaluation, it is found that
the new model can keep the spatial stride of regions, which
should be processed precisely, up to 2 smaller than that of the
traditional RaVioli.

One of our future works is merging this model and par-
allelization. RaVioli already can parallelize video processing
by applying automatic block decomposition for each frame
and by providing an easy-to-use pipelining interface which
can automatically balance loads between some processing
stages [1]. Because the execution time of a video processing
program can be reduced by these parallelization methods, the
resolutions will be prevented from being roughened, and it
will lead to improving the output precision. On the other hand,
the new tiling model should be applied to several useful real-
time video processing programs. To achieve this, we should
examine some new higher-order methods for them. Designing
a new video programming language which cooperates with
RaVioli is also left for our future work.

ACKNOWLEDGMENT

This research was partially supported by a Grant-in-Aid for
Young Scientists (B), #21700028, 2009, from the Ministry of
Education, Science, Sports and Culture of Japan.

(a) model (B) (b) model (T3,4) (c) model (T8,8)

　　

Fig. 9. The output images with the traditional model and the new models.

REFERENCES

[1] H. Sakurai, M. Ohno, T. Tsumura, and H. Matsuo, “RaVioli: a Parallel
Video Processing Library with Auto Resolution Adjustability,” in Proc.
IADIS Int’l. Conf. Applied Computing 2009, vol. 1, Nov. 2009, pp. 321–
329.

[2] K. Kondo, T. Inaba, H. Sakurai, M. Ohno, T. Tsumura, and H. Matsuo,
“RaVioli: a GPU Supported High-Level Pseudo Real-time Video Pro-
cessing Library,” in Communication Papers Proc. 19th Int’l Conf. on
Computer Graphics, Visualization and Computer Vision (WSCG2011),
Jan. 2011, pp. 39–48.

[3] A. Garcia-Martin and J. M. Martinez, “Robust Real Time Moving People
Detection in Surveillance Scenarios,” in Proc. 7th IEEE International
Conference on Advanced Video and Signal Based Surveillance, ser.
AVSS ’10. IEEE Computer Society, Aug. 2010, pp. 241–247.

[4] C. Kim, Y. Han, Y. Seo, and H. il Kang, “Statistical Pattern Based
Real-time Smoke Detection Using DWT Energy,” in Proc. International
Conference on Information Science and Applications. IEEE Computer
Society, Apr. 2011, pp. 1–7.

[5] K. Lin, J. Huang, J. Chen, and C. Zhou, “Real-time Eye Detection in
Video Streams,” in Proc. Fourth International Conference on Natural
Computation - Volume 06. IEEE Computer Society, Oct. 2008, pp.
193–197.

[6] C. Lee, Y. Wang, and T. Yang, “Static global scheduling for optimal
computer vision and image processing operations on distributed-memory
multiprocessors,” in Computer Analysis of Images and Patterns, ser.
Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
1995, vol. 970, pp. 920–925.

[7] W. W. Kywe, D. Fujiwara, and K. Murakami, “Scheduling of Image
Processing Using Anytime Algorithm for Real-time System,” in Proc.
the 18th International Conference on Pattern Recognition - Volume 03,
ser. ICPR ’06. IEEE Computer Society, 2006, pp. 1095–1098.

[8] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
Computations,” in Proceedings of the IEEE, vol. 82, Jan. 1994, pp. 83–
94.

[9] H. Yoshimoto, N. Date, D. Arita, and R. Taniguchi, “Confidence-Driven
Architecture for Real-time Vision Processing and Its Application to
Efficient Vision-based Human Motion Sensing,” in Proc. of the 17th
Int’l. Conf. on Pattern Recognition (ICPR’04), vol. 1, 2004, pp. 736–
740.

[10] D. Isovic, “Flexible Media Processing in Resource Constrained Real-
Time Systems,” in Proc. Eighth IEEE International Symposium on
Multimedia, ser. ISM ’06. IEEE Computer Society, Dec. 2006, pp.
363–370.

[11] U. Köthe, “Generic programming for computer vision: The vigra com-
puter vision library,” http://hci.iwr.uni-heidelberg.de/vigra/, Sep. 2011.

[12] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With
the OpenCV Library. O’Reilly & Associates Inc, 2008.

[13] Open Source Computer Vision Library, Intel Corp., 2001.
[14] G. Kovács, J. I. Iván, A. Pányik, and A. Fazekas, “The openIP Open

Source Image Processing Library,” in Proc. ACM Multimedia 2010, ser.
MM ’10. ACM, 2010, pp. 1489–1492.

[15] “Pandore: A library of image processing operators (Version 6.4). [Soft-
ware]. Greyc Laboratory,” http://www.greyc.ensicaen.fr/˜regis/Pandore,
2011.

[16] J. Segawa and T. Kanai, “The Array Processing Language and the Paral-
lel Execution Method for Multicore Platforms,” The First International
Symposium on Information and Computer Elements, 2007.

[17] S. Wang, Z. Dong, J. X. Chen, and R. S. Ledley, “PPL: A whole-image
processing language,” Comput. Lang. Syst. Struct., vol. 34, pp. 18–24,
Apr. 2008.

