
Dynamic processing slots scheduling
for I/O intensive jobs of Hadoop MapReduce

Shiori KURAZUMI ∗, Tomoaki TSUMURA∗, Shoichi SAITO∗ and Hiroshi MATSUO∗

∗ Nagoya Institute of Technology

Gokiso, Showa, Nagoya, Aichi, 4668555, Japan

Email: shiori@matlab.nitech.ac.jp,

{tsumura,shoichi,matsuo}@nitech.ac.jp

Abstract—Hadoop, consists of Hadoop MapReduce and
Hadoop Distributed File System (HDFS) , is a platform for large-
scale data and processing. Distributed processing has become
common as the number of data has been increasing rapidly
worldwide and the scale of processes has become larger, so
that Hadoop has attracted many cloud computing enterprises
and technology enthusiasts. Hadoop users are expanding under
this situation. Our studies are to develop the faster of executing
jobs originated by Hadoop. In this paper, we propose dynamic
processing slots scheduling for I/O intensive jobs of Hadoop
MapReduce focusing on I/O wait during execution of jobs.
Assigning more tasks to added free slots when CPU resources
with the high rate of I/O wait have been detected on each active
TaskTracker node leads to the improvement of CPU performance.
We implemented our method on Hadoop 1.0.3, which results in
an improvement of up to about 23% in the execution time.

Index Terms—Hadoop; MapReduce; Scheduling algorithm;
Slots Scheduling

I. INTRODUCTION

Due to developing a variety of services on the Internet and

explosively expansion of the population using the Internet,

the number of data has been increasing rapidly worldwide

and the scale of processes has become larger. We have taken

the measure to improve overall performance. It is called

distributed computing, which have cost-effective and general-

purpose computers cooperate with each other to handle dis-

tributing data or processes all over the cluster consists of

them. However, programming for distributed computing is

highly complicated. There are several reasons. For example,

we need to describe the way to deal with troubles during

network communication and failures of components and how

to partition, allocate, replicate data, and distribute processes

over a number of computers. In order to describe simple

algorithms without regarding of such programs for distributed

computing, using Hadoop could provide us a good solution,

with which we can skip to describe most part of the programs

for distributed computing, such as communication recovery

program, except for the original algorithm. Hadoop has at-

tracted many cloud computing enterprises and technology

enthusiasts. Both individuals and companies who use Hadoop

have been increasing.

In general, Hadoop cluster consists of a large number of

computers, so tasks assigned to TaskTrackers are not always

Data-Local or Rack-Local. Furthermore, there is possibility

that the physical distance between the node assigned a task to

and another node maintaining the input data which the task

requires may be longer in proportion to scale the cluster. In

addition, increasing a communication delay for such reasons

or sometimes other kind of failures may occur on Hadoop

system, which makes task I/O wait time longer, hence CPU

resources can not be used effectively. No matter how high I/O

wait percentage is, default Hadoop scheduler can nothing to

do except for waiting for the percentage to turn back naturally,

because the slots set as a maximum number of tasks executed

simultaneously are statically determined in Hadoop initializing

procedure.

In this paper, we propose dynamic processing slots schedul-

ing for I/O intensive jobs of Hadoop MapReduce to use CPU

resources effectively by assigning more tasks to added free

slots when it detects CPU resources with the high rate of I/O

wait on each active TaskTracker node. We have implemented

our method on Hadoop 1.0.3[1] and evaluating it.

The rest of this paper is organized as follows. A research

background on Hadoop MapReduce is given in section 2. Our

proposal and implementation is presented in section 3, and a

performance evaluation in section 4. Finally, we indicate future

works and conclude the paper in section 5.

II. RESEARCH BACKGROUND

Hadoop is a platform for parallel and distributed large-scale

data processing and one of the open-source projects by the

Apache Software Foundation[2], which has been developed

by the worldwide community of contributors. They enabled

the framework to apply thousands nodes as components of

Hadoop cluster and process petabyte scale data, therefore,

achieved completing absolutely large-scale processing in a

realistic executing time with their efforts. Hadoop consists of

the two typical components: Hadoop Distributed File System

(HDFS) mimicking Google File System (GFS) [3] and Hadoop

MapReduce. The former is a distributed file system handling

large-scale data and the latter is a framework for parallel and

distributed processing [1], [4].

Hadoop MapReduce is an open-source implementation of

MapReduce developed by Google[5]. Users submit jobs which

tsumura
テキストボックス
This paper is author's private version of the paper published as follows:
Proc. 3rd Int'l Conf. on Networking and Computing (ICNC'12), 288-292
Copyright (C) 2012 IEEE
DOI: 10.1109/ICNC.2012.53



comprise of Map phase and Reduce phase. These are subse-

quently divided into each independent Map tasks or Reduce

tasks. Input data which the job requires are also divided

into units called input splits. Then the tasks are assigned

to TaskTrackers on slave nodes consist in Hadoop cluster.

The main advantage of Hadoop is to facilitate users to deal

with large-scale parallel and distributed processing, thanks

to more numerous divided tasks in proportion to scale the

available nodes or CPU resources. MapReduce consists of the

contents as follows: Single JobTracker on master node and

multiple TaskTrackers on slave nodes. The former maintains

and schedules tasks and latter actually process assigned tasks.

There are slots for task execution on MapReduce. Map

slots are assigned Map tasks and Reduce slots are assigned

Reduce tasks. These tasks have been selected by the job

scheduler. The number of slots related to Map or Reduce,

each can be determined on each TaskTracker. In other words,

the number of slots is a maximum number of tasks executed

simultaneously on each TaskTracker. Job schedulers have their

roles in assigning appropriate tasks to such slots (Actually,

they consider only that which TaskTracker requires tasks).

Original Hadoop provides the three job schedulers: Job

Queue Task Scheduler, Fair Scheduler and Capacity Task

Scheduler. Users can select which job scheduler among them.

Job Queue Task Scheduler, which is the base of other job

schedulers, is default job scheduler based on First In First Out

（FIFO）queue. Tasks are assigned to nodes which maintain

their input split with first priority (Data-Local) , or other nodes

nearby such nodes which maintain their input split with second

priority (Rack-Local) . Both of Fair Scheduler and Capacity

Task Scheduler are job schedulers deal with multiple-users.

For example, due to Disk I/O or communication delay,

I/O wait percentage of CPU may become higher, hence CPU

resources can not be used effectively. As a consequence,

obtaining required input splits and copying Map outputs

take too much time, which makes the whole execution time

of jobs longer. For these problems, default Hadoop assigns

tasks based on the locations of their input splits by the job

scheduler. Input splits are generally maintained all over the

cluster. Job Scheduler called by JobTracker every HeartBeat

communication on each TaskTracker selects tasks except for

failed tasks or speculative tasks in that way described above.

However, tasks assigned to TaskTrackers are not always Data-

Local or Rack-Local. At this time, there is possibility that

the physical distance between the node assigned a task to

and another node maintaining the input data which the task

requires may be longer in proportion to scale the cluster.

In order to avoid I/O wait caused by such factors, Shadi

et al.[6] have proposed Maestro: a scheduling algorithm for

Map tasks to be selected based on the number of hosted Map

tasks and on the replication scheme for their input splits. Also,

another scheduling algorithm considering whether allocate

Non-Local tasks or not if the job scheduler can not select

Data-Local tasks has been proposed by Xiaohong et al.[7].

Other related works to improve performance by scheduling

tasks based on data locality have studied[8], [9]. These are the

way to avoid I/O wait, therefore, different from our proposed

method working after detecting I/O wait.

III. DYNAMIC PROCESSING SLOTS SCHEDULING FOR I/O

INTENSIVE JOBS

The goal of our studies is to reduce the whole execution

time of Hadoop jobs by using each CPU resource effectively

on slave nodes consist in Hadoop cluster. In this section, we

introduce our concrete proposed method and details of the

implementation.

A. Approach

At first, each active TaskTrackers on slave nodes consist

in the cluster monitor the state of the CPU with reference

to /proc/stat every predetermined interval. The varied states

are shown in /proc/stat that how long time is spent by

both of all CPUs and each CPU. We use I/O wait time

information among them. Next, I/O wait percentage of each

CPU is computed. While I/O intensive task is running on a

TaskTracker, the I/O wait percentage of the CPU processing

such task becomes higher. If this I/O wait percentage is greater

than the predetermined threshold value, one Map slot is added

(the number of Map slots is incremented) and which CPU has

caused adding Map slot is recorded by TaskTracker. We have

described what are Map slots in Sec.2. Then, if the state has

been on over a certain period of time, which the I/O wait

percentage of the CPU causing adding Map slot is smaller

than the predetermined threshold value, one added Map slot

is eliminated (the number of Map slots is decremented) . Note

that the Map slots are up to the initial number of Map slots

added the total number of CPUs of the slave node.

Job scheduler used for scheduling tasks to slots are called by

JobTracker when HeartBeat communication occurs between

a TaskTracker and a JobTracker. HeartBeat communication

between each TaskTracker and a JobTracker occurs every

3 seconds. Hadoop implemented our method computes the

I/O wait percentage and controls the number of Map slots

based on the CPU information measured during the interval

and the previous interval just before calling heartbeat method

of JobTracker. The number of slots are maintained by each

TaskTracker. The number of slots maintained by the Task-

Tracker causing calling the job scheduler is notified to the job

scheduler when it is called. That is, the updated number of

Map slots is notified every HeartBeat communication (Calling

job scheduler) . The job scheduler finds out the appropriate

Map tasks to the TaskTracker from remaining waiting Map

tasks based on the updated number of Map slots and return

them to JobTracker. If the number of Map slots has been

increased, the job scheduler assigns more Map tasks to added

free Map slots. As a result, the low usage CPU resources

caused by I/O intensive tasks are made to be used effectively.

Now, consider how to deal with Reduce slots. We suspect

that adding Reduce slots is not much effective for Hadoop jobs

execution, because of the implementation of default Hadoop

which avoid processing a lot of Reduce tasks simultaneously

on a node. The job scheduler assigns only one Reduce task to



a TaskTracker every scheduling turn, and in the first place, the

number of Reduce tasks which consist in a job predetermined

to about 90% of the number of Reduce slots is kept fewer.

Also, most of Hadoop users set the number of Reduce slots

to more numerous number in the case of using many-core

computers as slave nodes. However, the job scheduler takes at

minimum the time of HeartBeat communication period times

the number of Reduce slots to assign Reduce tasks to the full

extent to such TaskTrackers because of the implementation

such as described above. Consequently, it may be impossible

to use added free Reduce slots. For these reasons, we do not

handle the controlling the number of Reduce slots.

B. Implementation

We implemented our method on Hadoop 1.0.3 as follows:

• Initialization

When MapReduce daemons single JobTracker and

multiple TaskTrackers start, each TaskTracker

reads the required values from the configuration

file mapred-site.xml and initialize them. The initial

number of Map slots predetermined as the property

mapred.tasktracker.map.tasks.maximum is stored with

the variable maxMapSlots and simultaneously with the

variable maxMapSlots first as the initial value in order

to change maxMapSlots in our method. Users have

been enabled to predetermine the threshold value for

decision whether or not to add Map slots as the property

mapred.tasktracker.up.ioline and the threshold value

for decision whether or not to turn back Map slots as

the property mapred.tasktracker.down.ioline. Each of

these two values read from the configuration file at

initialization is stored with the variable up ioline or

the variable down ioline. Furthermore, all the arrays

to be stored required information related to each CPU

are initialized by using the number of CPUs read from

/proc/stat on each slave node with active TaskTracker as

the number of elements.

• Computing I/O wait percentage

The way of computing I/O wait percentage has been

based on mpstat command[10]. Both old and new value

of I/O wait time spent and total CPU time spent, which

are read from /proc/stat, are necessary to compute I/O

wait percentage. The old values are computed just after

calling the heartbeat method of JobTracker, in contrast,

the new ones are just before it along with the sequence of

steps. These values related to each CPU are acquired and

maintained. Acquiring the new values, each TaskTracker

computes current temporary I/O wait percentage with the

new and old value, then determine the average of it and

previous temporary one to final I/O wait percentage. Note

that current temporary I/O wait percentage are stored with

previous temporary I/O wait percentage after changing

the number of Map slots.

• Controlling the number of Map slots

The number of Map slots are controlled with computed

recent final I/O wait percentage of each CPU. At first,

in the case that a Map slot has not added owing a

CPU, if I/O wait percentage of the CPU is greater than

up ioline, the variable slot balance is incremented and

the counter back count of the CPU is set. the variable

slot balance is the difference from the initial number

of Map slots, whose initial value is zero and maximum

value is the number of CPUs of the slave node. the

counter back count of each CPU is used for turning back

added Map slots. The number of Map slots can change

drastically if the added Map slots are eliminated just

after the detection of the lower rate of I/O wait than

down ioline. Hence, this counter has been provided and

its initial value is set to two for the current implemen-

tation. Otherwise, in the case that I/O wait percentage

of the CPU is lower than down ioline, the back count
is decremented, then the slot balance is decremented

if the back count has reached zero. Processing these

steps related to each CPU, the number of Map slots is

determined to maxMapSlots first + slot balance by using

the method setMapMapSlots.

IV. PERFORMANCE EVALUATION

In order to make our method available, we have imple-

mented it on Hadoop 1.0.3 and evaluated its performance in

the environment shown in Table 1.

The threshold values for decision whether or not to control

the number of slots have been determined based on the

results of some preliminary experiments in the environment

for this evaluation. When we have evaluated up ioline and

down ioline, there is just the little difference between the

results of the values which are close. Also, setting up ioline
to the extremely high values can cause the performance

decrement because the high rate of I/O wait has appeared to

a mound when the transition of I/O wait percentage has been

indicated on graph. For this reason, up ioline is set to 50 and

down ioline is set to 10.

We use Sort[1] program as benchmark program because

Sort is basic operation as the program working on Hadoop

MapReduce. The Map function IdentityMapper and the Re-

duce function IdentityReducer only get Key-Value pairs from

RecordReader and output them. The amount of CPU process-

ing in both of Map and Reduce phases is less than the amount

of I/O processing, so that Sort is I/O intensive program.

The performance evaluation results with the clusters con-

sist of 4, 8 or 16 slave nodes is shown in Fig.1. The

graph compares default Hadoop and Hadoop implemented our

method with the execution time of single job and each bar is

normalized to the one of default Hadoop. Each slave node has

two Map slots and two Reduce slots initially. The benchmark

program is Sort and executed with the random data sets of

key-value pairs generated by RandomWriter[1]. The sizes of

them are 3GB, 6GB, 9GB, 12GB and 15GB. The execution

time consists of three parts: Map, Map+Reduce and Reduce.

Map is the state which is in only Map phase, Map+Reduce is

the mixed state which is in both of Map and Reduce phases

because Reduce phase starts before Map phase completes, and



Version hadoop 1.0.3
File system Hadoop File System
Benchmark program Sort[1]
Scheduler JobQueueTaskScheduler[1]

Master node
CPU (AMD Opteron 12-core 6168 / 1.9GHz) x2
OS CentOS 5.7
Kernel Linux 2.6.18
Memory size 32GB

Slave nodes
CPU Core i5 750 / 2.66GHz
OS Ubuntu 11.4
Kernel Linux 2.6.38
Memory size 8GB

TABLE I
PERFORMANCE ENVIRONMENT

Reduce is the state which is in only Reduce phase after Map

phase completes. The effectiveness of our proposal is increased

thanks to use the low usage CPU resources effectively in

proportion to the scale of job (the size of its input data this

time) for the scale of the cluster. In contrast, if the scale of job

for the scale of the cluster is too smaller, the execution time

of Hadoop implemented our method is longer than the one of

default Hadoop. This is due to a transient state with the high

rate of I/O wait of CPUs and the frequency of occurring task

I/O wait is low in the first place.

Fig. 1. Performance evaluation

Next, we have evaluated several times the fluctuation of

the total number of Map slots in the whole cluster during the

execution of single job with the cluster consists of 8 slave

nodes and 12GB input data, because most effectiveness was

found out in the execution pattern. The typical example of

these results is shown in Fig.2. The number of the total initial

number of Map slots in the whole cluster is set to 16, because

this cluster consists of 8 slave nodes. The execution time of

Map phase is about 50% of all execution time (including the

state Map+Reduce) according to the analysis of it as shown

in Fig.1. The total number of Map slots is increased up to 42

in the second half part. This results from a number of running

I/O intensive Reduce tasks in this part. At this time, all Map

tasks have completed. In the first half part of all experimental

results, the total number of Map slots has increased up to 27

and about 20 on average.

Fig. 2. One example of the fluctuation of the total number of Map slots
during the execution of single job

Furthermore, it is shown in Fig.3 that the execution times of

single job have been evaluated by using Hadoop implemented

our method and default Hadoop with the varied total initial

numbers of Map slots. The default value is set to 16, the

average value of the first half part is set to 20 and the

maximum value of the part is set to 27. Sort jobs have been

executed with these four conditions. The results executed with

both of the average and the maximum initial total number of

Map slots show that their execution times are improved about

7% from the default value. However, we suspect that these

values are only more suitable accidentally than the default

in this environment. There are various theories as to the

suitable number of Map slots related to the number of CPUs.

It is difficult to determine the value appropriately, because it

can change due not only to the number of CPUs of slave

nodes but also to the execution environment and running jobs.

Additionally, the execution times with both of the average

and the maximum total initial number of Map slots are much

the same, although the maximum value is 7 greater than the

average value. Compared with these results, the execution time

of Hadoop implemented our method has been much improved.

This result shows that our proposed slots scheduling algorithm

that controls the number of Map slots dynamically using I/O

loads is effective in I/O intensive jobs.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed dynamic processing slots

scheduling for I/O intensive job of Hadoop MapReduce to use

the CPU resources with low usage effectively caused by I/O

wait related to task execution which appears during executing

job on Hadoop cluster. In order to examine the effectiveness



Fig. 3. The execution times with 8 slave nodes and 12GB input data

of our proposal, we implemented the our proposed method

on Hadoop 1.0.3 and evaluated it by executing jobs with Sort
as the benchmark program. Modified Hadoop was enabled to

control the number of Map slots dynamically in comparison

with default static assignment. Using our proposed method,

the execution time was improved up to about 23% compared

with default Hadoop.

There are some future works for our studies. One of these is

switching how to control the number of Map slots according

to the change of MapReduce phases. For example, in the case

that there are only Reduce tasks in the job queues, adding Map

slots is actually pointless. Also, the decision whether or not to

perform the sequence of processes related to controlling the

number of slots is necessary to avoid the overhead of managing

threads to become greater than the effectiveness of adding Map

slots.

By addressing these issues, we aim to develop the more

polished faster of executing jobs originated by Hadoop.

ACKNOWLEDGEMENTS

This work was supported in part by KAKENHI, a Grant-

in-Aid for Scientific Research (C),24500113.

REFERENCES

[1] Hadoop, The Apache Software Foundation, May 2012, 1.0.3.
[2] Apache hadoop. [Online]. Available: http://hadoop.apache.org/
[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in

19th ACM Symposium on Operating Systems Principles, Lake George,
NY, Oct. 2003.

[4] T. White, Hadoop, R. Tamagawa and S. Kaneda, Eds. O’Reilly Japan,
2010.

[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” in 6th conference on Symposium on Opearting Systems
Design and Implementation, Berkeley, USA, Dec. 2004.

[6] S. Ibrahim, H. Jin, L. Lu, B. He, G. Antoniu, and S. Wu, “Maestro:
Replica-aware map scheduling for mapreduce,” in 12th IEEE/ACM
International Symposium on Cluster, I Cloud and Grid Computing,
Ottawa, Canada, May 2012.

[7] X. Zhang, Y. Feng, S. Feng, J. Fan, and Z. Ming, “An effective data
locality aware task scheduling method for mapreduce framework in
heterogeneous environments,” in International Conference on Cloud and
Service Computing, Hong Kong, China, Dec. 2011.

[8] M. Hammoud and M. F. Sakr, “Locality-aware reduce task scheduling
for mapreduce,” in 3rd IEEE International Conference on Cloud Com-
puting Technology and Science, Athens, Greece, Nov./Dec. 2011.

[9] C. He, Y. Lu, and D. Swanson, “Matchmaking: A new mapreduce
scheduling technique,” in 3rd IEEE International Conference on Cloud
Computing Technology and Science, Athens, Greece, Nov./Dec. 2011.

[10] sysstat, The Linux Foundation, Jul. 2012, 10.1.1.




