
Content-Aware Precision Control
on a Real-Time Video Processing Library
Takuya MATSUNAGA∗, Shinji OHIRA∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

Abstract—The performance of general purpose computers is
increasing rapidly, and now they are capable of running video
processing applications. However, on general purpose operating
systems, real-time video processing is still difficult because there
is no guarantee that enough CPU resources can surely be
provided. A pseudo real-time video processing library RaVioli
has been proposed for addressing this issue. RaVioli conceals two
resolutions, frame rate and number of pixels, from programmers
and provides a dynamic and transparent resolution adjustability.
Using RaVioli, pseudo real-time video processing can be achieved
easily, but output precision may be roughened for reducing
processing load. To solve this problem, this paper proposes a
new load adjustment method for RaVioli, which can divide whole
video frame into several sub-frames, and can process each sub-
frame with appropriate resolution or precision automatically.

Index Terms—Real-time video processing, load adjustment,
video processing library.

I. INTRODUCTION

Real-time video processing applications such as surveillance
systems, smoke detection systems or automatic vehicle col-
lision avoidance systems are now in demand. On the other
hand, the processors for general-purpose computers have been
developed drastically. The performance of the processors has
been improved, and the cost has been reduced. Therefore, it
is also expected that the performance improvement and the
cost reduction will promote real-time video processing on the
general-purpose computers and operating systems. However,
it is still difficult to realize the real-time video processing on
general-purpose systems. The main reasons for the difficulty
are the fluctuations in the computation load of each frame and
in the amount of the available CPU resource.

To solve this problem, we have proposed a high-level video
processing library RaVioli (Resolution-Adaptable Video and
Image Operating Library)[1], [2] which guarantees real-time
processing on general-purpose computing systems. RaVioli
can regulate the throughput rate by automatically modifying
spatial resolution and frame rate according to CPU usage and
load.

For such dynamic modification of the resolutions, a pro-
gramming fashion which is independent of the resolutions is
required. RaVioli conceals two resolutions, spatial resolution
(i.e. pixel rate) and temporal resolution (i.e. frame rate), from
programmers for changing the resolutions at run-time. This

can exclude the concept of resolutions from video processing
programming, and developers can write video processing
programs more intuitively.

However, resolutions can not be reduced without limitation,
because too low processing precision may make its processing
result worthless. It is ineluctable that the output precision is
somewhat reduced for achieving realtimeness, but the preci-
sion should be kept as high as possible.

In this paper, we propose a new load adjustment model
for RaVioli by managing resolution in each sub-area of input
frames separately, considering the feature of each sub-area.

II. RELATED WORKS

A. Real-Time Video Processing

So far, several real-time video processing applications have
been developed. For example, Garcia-Martin et al.[3] have
presented a moving people detection for surveillance video
systems. Kim et al.[4] have proposed a method for early smoke
detection. Lin et al.[5] have presented a real-time eye detection
algorithm.

As described in section I, it is difficult to implement
real-time video processing applications on general-purpose
systems. This is because that the amount of the available
CPU resources or computation load can fluctuate. To solve
this problem, some methods for adjusting the processing load
also have been developed. Writing multiple routines with
different algorithms has been the most-used solution for the
load adjustment. One example is the imprecise computation
model (ICM)[6], [7]. In this model, computation accuracy
varies corresponding to the given computation time limit.
With the confidence-driven architecture [7], which is based
on ICM, developers have to troublesomely implement mul-
tiple routines with different algorithms and different loads,
and the confidence-driven architecture selects suitable routine
dynamically and empirically among them. On the other hand,
RaVioli can apply load-adjustment to any video processing
applications automatically.

B. Libraries and Programming Languages

On the other hand, many image/video processing libraries
have been developed. For example, VIGRA[8], OpenCV[9],
OpenIP[10] and Pandore[11] are well-known image/video

tsumura
テキストボックス
This paper is author's private version of the paper published as follows:Proc. 2013 High Performance Computing & Simulation Conference (HPCS2013), pp.453–460Copyright (C) 2013 IEEE



processing libraries. Adopting template techniques similar to
the C++ STL, VIGRA allows developers to easily adapt
given components to their programs. OpenCV provides many
typical image/video processing algorithms as C functions or
C++ methods. OpenIP provides a set of interoperable, open
source libraries, satisfying the demands of image processing
and computer vision in education, research and industry, as
well. Pandore provides a set of executable image processing
operators. It is dedicated to image processing experts because
skills on image processing operations are needed to use
this library. These libraries provide high-level descriptivity
of image/video processing, but adjusting computation load is
difficult to be implemented with them.

Some programming languages for image processing
also have been developed. A loopless image processing
language[12], for example, allows developers to implement
image processing for embedded devices without any knowl-
edge about the processors or memory architectures. With this
language, developers can operate arrays without using loops
in programs with some special operators. However, developers
have to write programs with a formula editor and consider
array sizes.

Halide[13] is another programming language specialized
for image processing. In Halide programs, the algorithm for
image processing and parallelization procedure are separated,
and developers can try several scheduling for parallelization
without modifying the core algorithm for image processing.
However, this means that Halide requires developers to have
knowledge of not only image processing but also efficient
parallelization.

The approach of the library RaVioli[1], [2] is completely
different from existing computation models or image/video
processing libraries and languages. RaVioli allows program-
mers to be unaware of the existence of pixels and frames
through their video processing programming. Concealing pix-
els and frames from programmers, RaVioli can change spa-
tial/temporal resolutions and can adjust processing load dy-
namically and automatically. RaVioli also can parallelize video
processing automatically.

III. OVERVIEW OF RAVIOLI

A. Abstraction of Image and Video Processing

Two resolutions, spatial resolution and temporal resolution
of a video, are derived from the necessity of quantization on
computers, and are not natural. We human beings naturally
have no concept of resolutions through our visual recognition.
For example, developers should consider resolutions for im-
plementing a motion object detection application on computer
systems, even though we can recognize object motion in our
view without any pixel or frame. Hence, the presence of
resolutions makes video processing programs unintuitive.

To solve these problems, RaVioli provides a new program-
ming paradigm which conceals these two resolutions from
programmers. Hence, with RaVioli, developers can implement
video processing applications without considering pixels and
frames. Developers also can easily implement real-time video

(a) Traditional program. (b) Program with RaVioli.

Fig. 1. Digital image processing.

processing applications because RaVioli can automatically
vary resolutions for adjusting computation load and achieving
realtimeness.

Generally, loop iterations are heavily used in video process-
ing programs. When converting a color image to grayscale,
for example, each pixel will be converted to grayscale in
innermost iteration, and the process is repeated for every
pixel by loop nests as shown in Fig. 1(a). In the case of
neighborhood processing such as blur or edge enhancement,
the processed unit is a set of a pixel and its neighbour pixels,
and in the case of template matching, the processed unit is
a small window in each frame. These units are processed in
innermost iteration, and the process is applied repeatedly by
loop structures.

For using a loop structure for image processing, program-
mers should know the height and the width of the image for
defining the number of iterations of the loop. On the other
hand, with RaVioli, an image is encapsulated in an RV Image
instance, and this repetition for all pixels is applied by RaVioli
automatically, so developers should only write a routine for
one pixel as shown in Fig. 1(b).

GrayScale() in Fig. 1(b) is the routine defined by the
developer. What developers should do are defining a function
which processes one pixel and passing the function to one of
the image instance’s public methods. We call this function a
component function. In this example, the method is procPix(),
which is defined as a higher-order method of the RV Image
class. It applies a function passed as its argument to all pixels
in the RV Image instance one after another. This framework
allows developers to be released from resolutions and the
number of iterations.

Not only procPix(), RaVioli also provides some higher-
order methods for several processing patterns; such as template
matching, k-neighbor processing, and so on. As same as im-
ages, a video is also encapsulated in an RV Streaming instance
in RaVioli. Frames, the components of an RV Streaming
instance, are concealed from developers. An RV Streaming
instance also has several higher-order methods. Developers
should only define a component function, which manages one



(a) Spatial stride and resolution.

(b) Temporal stride and resolution.

Fig. 2. Changing processing resolution by stride access.

frame, and pass the function to an appropriate higher-order
method for video processing.

B. Real-Time Processing by Adjusting Computation Load

On general purpose systems, multiple processes are running
concurrently. Hence, it is difficult to implement real-time video
processing applications on such systems, because there is no
guarantee that enough CPU resources can surely be provided.
One solution for this problem is reducing computation load
by roughly processing the video data, or reducing the resolu-
tion of the video. RaVioli can change spatial and temporal
resolutions dynamically and automatically according to the
available CPU resources, because RaVioli conceals resolutions
from programmers.

RaVioli has two internal parameters; spatial stride (SS)
and temporal stride (ST), and RaVioli changes resolutions by
varying these parameters. Fig. 2(a) shows the relation between
the value of spatial stride and the processing spatial resolution.
Initially the value of spatial stride SS = 1, and all pixels
in a frame are processed. When the value of spatial stride
is increased to SS = 2, every other pixel is processed and
spatial resolution is roughened, and the whole processing load
is reduced to 1/4. For reducing the load more, spatial stride
is increased to SS = 3 and the load is reduced to 1/9.

Likewise, the relation between the value of temporal stride
and the temporal resolution is shown in Fig. 2(b). Initially,
the value of temporal stride ST = 1 and all frames are
processed. When the value of temporal stride is increased to
ST = 2, temporal resolution is reduced by processing every
other frame, and the whole computation load is also reduced
to 1/2. If the value of temporal stride becomes ST = 3, the
whole processing load is reduced to 1/3.

(a) input (b) output

Fig. 3. An example of a surveillance system.

Programmers can specify priorities for telling RaVioli
which resolution (spatial or temporal) should be kept high. In
a hard real-time video application, top priority will be given to
temporal resolution, and RaVioli reduces spatial resolution. In
other applications such as face authentication, top priority will
be given to spatial resolution, and RaVioli reduces temporal
one. What developers should do for load adjustment is only
specifying priorities.

The resolution priority is specified by a tuple of two values
(PS, PT) called a priority set. PS represents the priority of
spatial resolution, and PT represents the priority of temporal
resolution. When (PS, PT) = (3, 7) is specified, the priority
ratio of PS and PT is recognized as 3:7, and RaVioli manages
to keep spatial stride and temporal stride in the ratio of 7:3.
Therefore a video processing application, which fulfills the
performance demand and realizes real-time processing, can
be easily implemented.

C. Problem with RaVioli

RaVioli can automatically change resolutions for adjusting
processing load according to the currently available CPU
resources. Hence, the output sometimes will have low quality.
Although this can not be avoided for achieving realtimeness,
developers expect the input video frames to be processed with
as high resolutions as possible.

For alleviating this problem, developers can control the
inconvenience from quality loss by defining priority set ap-
propriately. The resolution which is given top priority can be
kept relatively higher than the other resolution. However, the
other resolution is roughened a lot when computation load is
high. Thus this remains as a problem for RaVioli.

Now, assume that a surveillance system is implemented
with RaVioli. This application is required to detect an intruder
in the input video stream, and to show the features of the
intruder precisely. Hence, both of the spatial resolution and
temporal resolution are very important for this application.
However, the available CPU resources are limited. It is a severe
problem if an intruder is missed because of too roughened
temporal resolution, and the developer should give top priority
to temporal resolution.

Fig. 3 shows an input and an output of this surveillance
system. In the input frame shown in Fig. 3(a), an intruder is
included. If this input frame is processed with a particularly
low spatial resolution, the features of the intruder can not be



Fig. 4. Dividing video stream.

clear in the processing result as shown in Fig. 3(b), and this
result may be useless for the user of this application.

As described above, RaVioli achieves load-adjustment by
changing resolutions. However, there is a limit on reducing
resolutions. If an input frame is processed with a drastically
roughened spatial resolution, the output may not serve devel-
opers purpose. To prevent this situation, this paper proposes a
new load-adjustment model for RaVioli, considering the char-
acteristics of input video frames in real-time video processing.
With the new RaVioli, each input video frame is divided into
several sub-frames, and each sub-frame can be processed with
appropriate resolution or precision automatically, according
to its importance for the processing. The proposed model
eliminates wasteful processing in real-time video processing.
Hence, this model alleviate the problem caused by reducing
spacial/temporal resolutions.

IV. ADJUSTING RESOLUTIONS OF EACH SUB-FRAME

A. Basic Concept

In real-time video processing, some part of a frame will
be important and should be processed precisely, but other
part is not necessary to be processed precisely. For such
perspective, we have proposed a tiling method with different
spatial resolutions[2]. In this paper, we will improve this
method.

Fig. 4 shows an example of dividing a video stream into
four sub-streams. SS and ST represent spatial stride and
temporal stride respectively. Each sub-stream has its own
spatial resolution and temporal resolution, and can vary them
independently of other sub-streams. Important areas should
be processed precisely, hence corresponding sub-streams have
high resolutions, or low stride values. On the other hand,
unimportant areas should be processed in low resolutions with
high stride values. In this way, the processing result with high
precision can be compatible with lower computation load.

However, this method has a problem that it can not adapt
rapidly to the change in the input video streams. An unimpor-
tant sub-stream has a low temporal resolution, and there will
be a time lag from when a change emerges to when the change
is detected in the input video. Moreover, such an unimportant
sub-stream also has a low spatial resolution, and the processing
result will have insufficient precision.

In response to this, we focus on the characteristics of
“important areas.” Each area does not become “important”

Fig. 5. An example of surveillance system.

at random completely, but there is a certain tendency. For
example in Fig. 5, the programmer can predict that an intruder
will appear from the door. Then, the intruder should move into
one of the adjacent sub-area, unless he can teleport himself.
Consequently, considering input video streams for real-time
video processing, it can be predictable which sub-area will
become important soon.

Based on this concept, we propose a new load-adjustment
method considering changes in input video streams. In the
proposed method, we define the areas, which may become
important soon, as preferential areas, and make the resolutions
of them be kept relatively high. Real-time video processing
application written with RaVioli can rapidly adapt to the
change in the input video streams with this method.

B. Preferential Areas

1) Areas where Some Changes will Occur: We regard the
areas where some changes occur as important areas for real-
time video processing, as described in the previous section.
The location of important areas will vary because the contents
of input video frames are changing every moment. However,
there are some characteristics of such important areas.

First, it is somewhat predictable where input change will
occur initially. Now, assume that the input frame shown in
Fig. 6(a) is being processed. There is no important area in
this input frame, and whole of the frame can be processed in
low quality. However, if the resolution becomes too low, some
changes in the input cannot be detected immediately, and the
sub-frames which contain the changes can not be processed
in appropriate precision for a little while. Now, notice that
programmers will predict that the change in input will be
brought by someone coming from the door. In real-time video
processing applications, programmers will often predict where
some changes will occur in the input frame.

Next, it is probable that there will occur some changes in
the areas around the current important areas. Now, assume
that the input frame shown in Fig. 6(b) is being processed.
In this input frame, the area covering the running person is
important, and should be processed precisely. The location of
the important area will change, because the person is moving.
However, it is predictable that the important area just after



(a) Predictable area where some
changes will occur initially.

(b) Probable area where changes will
occur next.

Fig. 6. Areas where changes will occur.

(a) Manual definition of preferential
sub-frames.

(b) Automatic location of preferen-
tial sub-frames.

Fig. 7. How to specify preferential sub-frames.

this frame will be located around the current important area,
because the person can not disappear or appear suddenly.

Considering these two tendencies of important areas, we in-
troduce a concept of preferential area, and keep the resolution
for preferential areas relatively high even if there occurs no
change in the area. Preferential areas can be defined manually
and automatically.

2) Specifying Preferential Sub-frames:
a) How to Define Manually: For defining preferential

areas, or preferential sub-frames, RaVioli provides an user
interface for programmers. The interface is described in sec-
tion V-B later. Using this interface, programmers can define
some areas where changes will occur initially as preferential
sub-frames. For example on the frame shown in Fig. 7(a), 12
sub-frames covering the door can be defined as preferential
sub-frames by the programmer.

b) How to Locate Automatically: We installed a faculty
of locating preferential areas automatically in RaVioli. Now
RaVioli can manage the sub-frames around the current im-
portant sub-frames as preferential sub-frames, and keep their
resolutions higher than unimportant areas. Hence, real-time
video processing application implemented RaVioli can adapt
to the change in the input video streams, and can generate high
precision result. For example on the frame shown in Fig. 7(b),
12 sub-frames around the 3 sub-frames covering the running
person are automatically managed as preferential sub-frames.

V. IMPLEMENTATION

A. Load-Adjustment

For achieving both of realtimeness of video processing and
high precision processing results of important areas, multiple

(a) Base and rough spatial strides.

(b) Base and rough temporal strides.

Fig. 8. Base stride and rough stride.

options of spatial/temporal stride should be provided for each
video sub-stream. In this paper, we provide three strides; base
stride, rough stride, and medium stride for important area,
unimportant area, and preferential area respectively.

1) Base Stride and Rough Stride: Base stride is a stride op-
tion for important areas. Important areas should be processed
as precise as possible, and the value of base stride is set as
small as possible.

On the other hand, rough stride is a stride for unimportant
areas. Unimportant areas should be processed in low resolution
to reduce whole processing load for achieving real-time video
processing. Hence, the value of rough stride is defined as larger
than base stride.

Now, Fig. 8(a) and Fig. 8(b) shows how base stride and
rough stride are applied to spatial and temporal resolutions. In
both figures, a video stream is divided into 2× 2 sub-streams,
and the boundaries are depicted by dashed lines.

For ease of explanation, the value of rough stride is twice as
base stride, and assume that left two sub-areas are important
and right two sub-areas are not important, in this example.
First, when spatial base stride SS = 1, unimportant sub-areas
are processed with rough spatial stride 2, as shown in Fig. 8(a)
In this case, the whole processing load of a frame is reduced
to 5/8, compared with previous RaVioli which processes the
whole frame with SS = 1. When SS = 2, the value of rough
stride is 4, as shown in the right side of Fig. 8(a). In this case,
the whole processing load of a frame is reduced to 5/32.

On the other hand, when temporal base stride ST = 1,



Fig. 9. An example of locating medium stride areas.

1 void ForPixel(RV Pixel ∗pixel){
2 /∗ Processing for each pixel. ∗/
3 }
4 void ForImage(RV Image∗ Frame){
5 Frame−>procPix(ForPixel);
6 }
7 int FrameDiff(RV Image ∗Curr, RV Image ∗Prev){
8 /∗ determine whether precisely or not ∗/
9 }

10 int main(int argc, char∗ argv[]){
11 RV Streaming video;
12 video.setPriority(7,3); // priority set
13 video.setCondFunc(FrameDiff); // condition func.
14 video.setTileNum(5,6); // divide input into 5x6 tiles
15 video.setTilePriority(0,4,1,5); // specify preferential sub−areas
16 video.RunCapture(); // start capturing
17 video.StreamProc(ForImage); // higher−order method for streaming
18 return 0;
19 }

Fig. 10. A sample program using the proposed method.

unimportant sub-streams are processed with rough temporal
stride 2, as shown in Fig. 8(b). In other words, the unimportant
areas in one of the each two frames will not be processed and
the result of the previous frame is used. In this case, the whole
processing load of this video is reduced to 3/4. When base
temporal stride ST becomes 2, rough temporal stride becomes
4, as shown in the right side of Fig. 8(b). In this case, the
whole processing load is reduced to 3/8.

As mentioned above, the proposed method adjusts the whole
computation load by reducing the precision for unimportant
sub-areas, and keep the precision for important sub-areas.

2) Medium Stride: As mentioned in section IV-B, we define
preferential area for adapting rapidly to the changes in input
videos. Hence, the new stride medium stride is provided for
preferential areas. The value of medium stride is set between
the value of base stride and the value of rough stride. This
means that, an area processed with medium stride can reduce
computation load compared with base stride, and can detect
changes rapidly in input videos compared with rough stride.

Now, let us see how medium stride is applied to sub-areas in
Fig. 9. The digit on each sub-frame indicates the stride value
of the sub-frame. In this example, the two sub-areas which

TABLE I
EVALUATION ENVIRONMENT.

OS Fedora15
CPU AMD Phenom II X4 965

Frequency 3.4GHz
Memory 8GB
Compiler gcc 4.6.0

Compiler options -O3

include the door are manually defined as preferential areas,
because it is predictable that some change may occur there.
Assume that, the value of base stride is 1, rough stride is 5, and
medium stride is 3. In the first frame, there is no change in the
input, and the two preferential sub-frames use medium stride,
and the other sub-frames use rough stride. In the second frame,
an intruder appears from the door, and the input changes.
Hence, base stride is applied to the sub-frames on the intruder,
and medium stride is applied to the adjacent sub-frames. After
that, if the intruder moves, appropriate strides are applied to
all sub-frames according to the input as shown in the third
frame in Fig. 9.

B. User Interface

For implementing applications with new RaVioli proposed
in this paper, some user interfaces are defined. A sample
program with new RaVioli is shown in Fig. 10. The condition
function FrameDiff, and the component functions ForPixel and
ForImage are defined by the programmer.

Condition functions take responsibility for deciding whether
each area should be processed precisely or not, and the
concept of them is described in [2] in detail. They should
have one sub-frame or two temporary adjacent sub-frames
as its argument(s), and return 1(true) if the sub-frame should
be processed precisely or return 0(false) if not. For example,
FrameDiff in this example is a condition function for deciding
each sub-frame’s preciseness based on the difference between
temporary adjacent sub-frames.

In main function at the line 10, the RV Streaming instance
video for handling the input video is generated (line 11), and
priority set is defined (line 12). Next, the condition function
FrameDiff is set (line 13), and the video stream is divided
into sub-streams (line 14). Here, division is specified as 5×6,
so the input video stream is divided into 30 sub-streams with
five rows and six columns.

After that, preferential sub-frames are defined manually.
Preferential sub-frames can be specified by calling the special
function setTilePriority with the co-ordinates of upper-
left and lower-right corner of the area (line 15). Finally,
capturing is started with the description at the line 16, and
video processing is started by passing the component function
to a higher-order method of the instance video (line 17).

VI. EVALUATION RESULTS

We evaluated the new model of RaVioli proposed in this
paper for confirming that important areas can be processed



(a) Output of the previous model. (b) Output of the new model without medium stride. (c) Output of the new model with medium stride.

Fig. 11. Outputs of the 36th frames.

(a) Output of the previous model. (b) Output of the new model without medium stride. (c) Output of the new model with medium stride.

Fig. 12. Outputs of the 80th frames.

in finer resolution than the previous model. The evaluation
environment is shown in TABLE I.

For this evaluation, we used a template matching program
for searching a face in profile. The input video stream is
composed of 120 frames and the spatial input resolution is
320 × 240. Each frame is divided into 9 × 9 sub-areas, and
the function, which judges whether two adjacent frames have
large difference or not, is used as the condition function. The
priority set is defined as (PS,PT) = (1, 1).

We evaluated and compared three models; (a) the previous
RaVioli, (b) the new model without using medium stride, and
(c) the new model with using medium stride. Fig. 11 shows
each model’s output of the 36th frame where some changes
take place in the input frames, and Fig. 12 shows the each
output of the 80th frame.

In the proposed models (b) and (c), the sub-frames around
the door are manually defined as preferential areas. The results
of template matching is drawn with blue boxes in Fig. 12.

First of all, in the 36th frames shown in Fig. 11, the
person coming from the door can not processed precisely with
both of (a) and (b). On the other hand with the proposed
method (c), the appearance of the person can be distinguished,
because the sub-frames around the door are manually defined
as preferential and the processing can rapidly adapt the input
changes.

Next, in the 80th frames shown in Fig. 12, the spatial reso-

lution of the whole frame is drastically reduced for adjusting
the computation load with (a). Hence, the face in profile of
the walking person cannot be distinguished clearly. With (b),
the person is just passing across a border between important
area and unimportant area, and the template matching fails
because the face part is not processed properly. On the other
hand with the proposed method (c), the face in profile of the
walking person is processed precisely. The above results lead
to the conclusion that video processing applications with the
proposed method can achieve both of realtimeness and high
precision processing results.

Finally, the fluctuation of spatial base stride and temporal
base stride are shown in Fig. 13 and Fig. 14 respectively. The
horizontal axis shows the input frame indices, and the vertical
axis shows the value of stride. Two vertical gray lines in each
figure indicate the 36th and 80th frames shown in Fig. 11
and Fig. 12. With the proposed model (c) which employs
medium stride, both of spatial and temporal base strides can
be kept lower than the previous model. TABLE II shows the
average values of spatial and temporal base strides of the
previous model and the proposed model. As shown in this
table, the precision of important areas can be kept higher with
the proposed model using medium stride.

VII. CONCLUSION

In this paper, we proposed an improvement for real-time
video processing library RaVioli. New RaVioli with this



Fig. 13. The fluctuation of spatial base stride.

Fig. 14. The fluctuation of temporal base stride.

improvement can cope with appropriate load-adjustment for
achieving realtimeness, both high quality output for important
areas in video frames. With new RaVioli, the area which may
become important can be managed as preferential area, and the
preferential area can be defined manually and automatically.

Through an evaluation with a template matching program,
it is found that the new RaVioli can achieve a high quality
real-time processing by keeping the resolutions for important
regions high and adapting the changes in input frames rapidly.

One of our future works is merging this improvement and
an auto-parallelization mechanism on RaVioli. RaVioli already
can parallelize video processing by applying automatic block

TABLE II
AVERAGE VALUE OF BASE STRIDES.

spatial temporal
Previous model 2.95 1.98
Proposed model w/ medium stride 1.40 1.40

decomposition for each frame and by providing an easy-to-
use pipelining interface which can automatically balance loads
between some processing stages[1]. Because the execution
time of a video processing program can be reduced by these
parallelization methods, the resolutions will be prevented from
being roughened, and it will lead to further improvement of
the output precision.

REFERENCES

[1] H. Sakurai, M. Ohno, T. Tsumura, and H. Matsuo, “RaVioli: a Parallel
Video Processing Library with Auto Resolution Adjustability,” in Proc.
IADIS Int’l. Conf. Applied Computing 2009, vol. 1, Nov. 2009, pp. 321–
329.

[2] K. Kondo, A. Ono, T. Inaba, T. Tsumura, and H. Matsuo, “Tiling with
Different Spatial Resolutions for Pseudo Real-Time Video Processing
Library RaVioli,” in Proc. 7th Int’l Conf. on Signal-Image Technology
and Internet-Based Systems (SITIS2011), Nov. 2011, pp. 253–260.

[3] A. Garcia-Martin and J. M. Martinez, “Robust Real Time Moving People
Detection in Surveillance Scenarios,” in Proc. 7th IEEE Int’l Conf.
on Advanced Video and Signal Based Surveillance (AVSS’10). IEEE
Computer Society, Aug. 2010, pp. 241–247.

[4] C. Kim, Y. Han, Y. Seo, and H. il Kang, “Statistical Pattern Based
Real-time Smoke Detection Using DWT Energy,” in Proc. Int’l Conf.on
Information Science and Applications. IEEE Computer Society, Apr.
2011, pp. 1–7.

[5] K. Lin, J. Huang, J. Chen, and C. Zhou, “Real-time Eye Detection in
Video Streams,” in Proc. 4th Int’l Conf. on Natural Computation, vol. 06.
IEEE Computer Society, Oct. 2008, pp. 193–197.

[6] J. Liu, W.-K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung, “Imprecise
Computations,” in Proceedings of the IEEE, vol. 82, Jan. 1994, pp. 83–
94.

[7] H. Yoshimoto, N. Date, D. Arita, and R. Taniguchi, “Confidence-Driven
Architecture for Real-time Vision Processing and Its Application to
Efficient Vision-based Human Motion Sensing,” in Proc. 17th Int’l.
Conf. on Pattern Recognition (ICPR’04), vol. 1, 2004, pp. 736–740.

[8] U. Köthe, “Generic programming for computer vision: The vigra com-
puter vision library,” http://hci.iwr.uni-heidelberg.de/vigra/, Sep. 2011.

[9] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision With
the OpenCV Library. O’Reilly & Associates Inc, 2008.

[10] G. Kovács, J. I. Iván, Árpád Pányik, and A. Fazekas, “The openIP Open
Source Image Processing Library,” in Proc. Int’l Conf. on Multimedia
(MM’10). ACM, 2010, pp. 1489–1492.

[11] “Pandore: A library of image processing operators (Version 6.4). [Soft-
ware]. Greyc Laboratory,” http://www.greyc.ensicaen.fr/˜regis/Pandore,
2011.

[12] J. Segawa and T. Kanai, “The Array Processing Language and the Paral-
lel Execution Method for Multicore Platforms,” The First International
Symposium on Information and Computer Elements, 2007.

[13] J. Ragan-Kelley, A. Adams, S. Paris, M. Leboy, S. Amarasinghe, and
F. Durand, “Decoupling Algorithms from Schedules for Easy Optimiza-
tion of Image Processing Pipelines,” in ACM Transactions on Graphics
(TOG) - SIGGRAPH 2012 Conference Proceedings. ACM, July. 2012.




