
Fine-Grain Conflict Management
for Hardware Transactional Memory Systems

Employing Eager Version Management
Shoichiro HORIBA∗, Hiroki ASAI∗†, Masamichi ETO∗, Tomoaki TSUMURA∗ and Hiroshi MATSUO∗

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Currently with DENSO CORPORATION
1-1, Showa-cho, Kariya, Aichi, Japan

Abstract—On hardware transactional memory systems, false
sharing on the shared cache brings conflicts between some
transactions even if the transactions do not share any data. This
paper proposes a method for managing transaction conflicts not
on each cache block but on each octet or such a small unit.
The method can be implemented with low hardware costs, and
the evaluation results show that the method can improve the
performance of transactional memory 89.4% in maximum, and
26.3% in average.

I. INTRODUCTION

High-speed processor technologies have been achieved by
multiplying clock frequency. However, as electric power con-
sumption and thermal dissipation are increasing, it becomes
difficult to raise clock frequencies of microprocessors. Com-
plying with this trend, multi-core processors have been widely
prevalent. When the shared memory programming is used
on the processors, independent cores share a single address
space. Hence, locking is generally used as a concurrency
control mechanism. However, lock-based methods can cause
deadlocks, and they lead to poor scalability. To solve these
problems, Transactional Memory [1] has been proposed as
a lock-free synchronization mechanism. In general HTMs,
which are the hardware implementations of transactional mem-
ories, the fields called read bit and write bit are installed
on each cache block. These bits keep track of the read/write
accesses in transactions. However, even when multiple threads
try to access to different data on a same cache block, a
conflict is detected. This is because conflicts are managed
on each cache block. Hence, the thread which detects such a
conflict by receiving NACK must stall its transaction until the
opponent transaction is committed. In addition, such a conflict
can occur outside of transactions, because non-shared data will
not be protected in transactions by programmers. To solve
this problem, this paper proposes a fine-grain transactional
conflict management for eager version management HTM
systems. Using this conflict management method, memory
accesses, which potentially have no conflict, can avoid being

accidentally detected as transactional conflicts.

II. RELATED WORK

On shared memory multi-core processors, when multiple
threads access to different data on the same cache block, a
well-known problem called false sharing[2] occurs. A general
solution for this problem is locating such data on different
cache blocks by padding useless data[3]. However, padding
leads to high memory usage and low spatial locality.

Under the situation where multiple transactions specula-
tively run in parallel, false sharing can cause false conflicts. In
this case, the thread which finds a false conflict should stall
its transaction, and the transaction will be serialized.

A method for solving the problem of false conflicts by de-
coupling transactional conflicts from cache coherence conflicts
is proposed[4]. In the model, even if a thread detects a conflict,
the thread keeps running its transaction speculatively on the
assumption that the conflicted datum has not been modified
by any other transactions. On commit of the transaction, the
conflicted datum is checked whether it has been modified or
not, and if modified, the transaction is aborted.

This method can increase the number of parallel transac-
tions. However, when a speculative execution of a transaction
fails and the transaction is aborted, all the speculative execu-
tion of the transaction is discarded because the method is based
on lazy conflict detection. Incidentally, the method can not be
applied to eager version management transactional memory
systems, because it can not restore a part of cache block. It
is also a problem that the hardware implementation and the
additional hardware cost are not discussed in detail, and the
feasibility is not clear.

On the other hand, a fine-grain conflict management method
proposed in this paper can detect transactional conflicts more
strictly, by dividing a cache block into several subsets and
checking conflicts on each subset. This can prevent false
conflicts. Moreover, this method can be used not only with lazy

Core1

Cache1

Shared Memory

R W

0 1

Data

13 68 52 49

Address

0x100-0x10C

Tag

0x100

Data

26 68 52 49

a[0-3]

(t2+∆) Fill and Write

Core2
Cache2

R WTag Data

(t3+∆) Invalid Req

(t3+2∆) NACK

(t2+2∆) Set W bit

Fig. 1. False conflict on accessing different variables.

Time

　
　
　
　

Thread1

t1 BEGIN_XACT;
t2 a[0]=26;
t3 ...
t4 ...

Thread2

BEGIN_XACT;
...
a[2]=70;

COMMIT_XACT;

Fig. 2. Sample codes executed on the threads.
　　

version management but also with eager version management,
supporting partial restore of a cache block on aborts.

III. FINE-GRAIN CONFLICT MANAGEMENT

In this section, the problem which general HTMs have is
described, and a fine-grain conflict management is proposed.

A. Problem of Cache Block Based Conflict Management

General HTMs have a problem that a false conflict is
detected when multiple transactions access to different data
on a certain cache block, because transactional conflicts are
managed on each cache block. Fig. 1 shows the problem
on LogTM[5]. LogTM is a hardware transactional memory
system employing eager conflict detection and eager version
management. In this figure, two unique threads are accessing
different data on the same cache block. Now, Thread1 runs on
Core1, and Thread2 on Core2. Each thread executes the codes
shown in Fig. 2. Here, BEGIN_XACT and COMMIT_XACT
indicate the beginning and the end of a transaction respectively.
The column of Time in Fig. 2 represents the time when each
statement is executed, and t1 < t2 < t3 < t4 here.

First, two threads starts their own transactions (t1), and then,
Thread1 stores a value to a[0] (t2). Now, a[0] is not on
the cache, and the block at 0x100 on the shared memory is
transferred onto the cache, and a[0] is updated on the cache
(t2+∆ in Fig. 1). On eager version management HTM systems,
the address 0x100 and the previous value of the cache block
are kept in the area called log, but the behaviour around the
log is omitted in this figure. Then, the write bit of the cache
block is set, because the block is modified (t2+2∆).

Next, Thread2 tries to store a value to a[2], which is
on the same cache block with a[0] (t3). Thread2 sends an
invalidation request to the block 0x100 (t3+∆). Receiving this
request, Thread1 refers the read and write bits of the block
0x100. Now, the write bit is set and a conflict is detected, and
Thread2 receives NACK (t3+2∆).

In this way, when multiple threads are going to access to
different data on the same cache block, a conflict is detected.
This can cause a significant performance degradation, but it is
hard for programmers to prospect which data will be located
in the same cache block and which data are not.

Generally, different variables which are defined as thread-
local storage will not be located in the same cache block.
However, when the spaces for the variables are allocated on
heap area by malloc(), different thread-local variables can be
located in the same cache block. For the same reason, a thread-
local variable and a global variable can share a cache block.

Especially in eager version management HTM systems, all
NACKed threads must be stalled, and false conflicts can cause
severe performance degradation. In this paper, we call the stall
which is derived from a false conflict as a false stall.

Incidentally and interestingly, false stalls can occur outside
of transactions. In other words, threads on HTM systems can
be NACKed and stalled even when they are processing the code
outside of its transactions. The reason is that, programmers
will protect shared data by enclosing them in transactions, but
false stalls can occur on exclusive data, even on thread-local
variables, and such data will not be protected in transactions
on any account.

To solve this problem, a fine-grain transactional conflict
management for eager version management HTM systems is
proposed in this paper. By managing conflicts on subsets of
the cache blocks, false stalls can be avoided.

B. Outline of Proposed Model

1) Conflict Detection: The behaviour of conflict detection
on the method proposed in this paper is explained with an
example shown in Fig. 3. Now, two threads are executing the
transactions shown in Fig. 2. First, each of the threads starts
its own transaction (t1), and Thread1 on Core1 stores a value
to a[0] (t2). Then, the block 0x100 is cached and the value
of a[0] is updated (t2 in Fig. 3).

After that, Thread2 on Core2 tries to store a value to a[2]
(t3), and an invalidation request for the block 0x100 is sent to
Core1. In the existing HTM systems, the invalidation request is
labeled with the block address 0x100, but not labeled with the
address of the concerned datum a[2]. Hence, Thread1 can
not know whether the access requested from Thread2 surely
conflicts with the own previous access to a[0], or not.

On the other hand, the new conflict management system,
which is proposed in this paper, piggybacks the target address
a[2] along with the invalidation request to Thread1 as shown
(t3+∆) in Fig. 3(a). Beforehand, Thread1 keeps track of the
read/write accesses in its own transaction in a fine-grained
manner. Hence, Thread1 can know whether there surely is a
conflict or not, by receiving the address of a[2].

In this example, Thread1 has not accessed to a[2], and it
is considered that the access by Thread2 does not lead to a
conflict. Therefore, complying with the cache coherence pro-
tocol, Thread1 invalidates the cache block of 0x100 (t3+2∆),
sends ACK to Thread2 (t3+3∆), and writes back the block

Core1

(t2) Fill and Write

(a)

(b)

R W

- -

Tag

0x100

Data

26 68 52 49

Cache1
Core2

Shared Memory
Data

13 68 52 49

Address

0x100-0x10Ca[0-3]

Core1 Core2

Shared Memory
Data

26 68 52 49

Address

0x100-0x10Ca[0-3]

(t3+3∆) ACK

(t3+4∆)Write back (t3+5∆) Fill and Write

R WTag Data

Cache2

R WTag Data

Cache1

(t3+2∆) Invalidate Line

R W

- -

Tag

0x100

Data

26 68 70 49

Cache2

(t3+∆) Invalid Req.
with “&a[2]”

Fig. 3. Accesses to different data on the same cache block are granted in
the proposed model.

(t3+4∆), as shown in Fig. 3. After that, Thread2 caches the
block of 0x100, and updates the value of a[2] (t3+5∆).

2) Aborting: When aborting a transaction, LogTM writes
back the old values stored in the log to the memory, and the
state of the memory is rolled back to the beginning of the trans-
action. Here, the whole cache block which includes the old
values is stored in the log and is written back to the memory.
However in the new conflict management model, there may
be some values modified by other threads in the cache block,
and such values should not be restored to their past states.
Hence, we propose a new cache coherent mechanism for our
conflict management model. Cache coherency is maintained by
restoring not the whole cache block but only a necessary part
of the cache block. Detailed implementation of this mechanism
is described in the next section.

IV. HARDWARE IMPLEMENTATION

In this section, additional hardware for achieving the fine-
grain conflict management and its behaviour is described.

A. Additional Hardware

For implementing the fine-grain conflict management, a
small RAM named R/W Table is installed to each core of the
HTM system. This table is used for keeping the fine-grained
information about read/write accesses on specific cache blocks.
A field is also installed to each cache block. The field, which
is represented as Ptr in this paper, is used for storing an index
of R/W Table entry associated with the cache block.

Fig. 4 shows the structure of the proposed HTM system. In
the proposed system, it is assumed that there are N subsets
in a cache block, and transactional conflicts are managed on
each subset. In this way, false conflicts are avoided. Each
processor core has one R/W Table, which has four fields;
Tag for cache tag, R for managing read accesses, W self for

Core

R/W Table

00

Tag
R Wself Wothers

#0#1 #2 #3 #0#1 #2 #3#0#1 #2 #3

…… ……

…………

Tag Data R W Ptr
Cache

…… ……
Fig. 4. Processor structure of proposed HTM.

Core1

00

Tag
R1 W1

self W1
others

0x100 0 0 0 0 1 0 0 0 0 0 0 0

#0#1#2#3#0#1#2#3#0#1#2#3

R/W Table1

Tag
0x100

Data R W Ptr
26 68 52 49 0 0 00

Cache1

Core2

00

Tag
R2 W2

self W2
others

#0#1#2#3#0#1#2#3#0#1#2#3

Shared Memory
Data

13 68 52 49

Address
0x100-0x10Ca[0-3]

Tag Data R W Ptr
Cache2

R/W Table2

(t2+2∆) Record Entry

(t2+∆) Update

Fig. 5. Registering conflict information to R/W Table.

managing write accesses issued by the transaction on the own
core, and W others for managing write accesses issued by the
transactions on the other cores. Each of R, Wself and Wothers

has N -bit width for managing the accesses on N subsets of
each cache block individually.

The depth of R/W Table is arbitrary, but we have confirmed
through performance evaluation that not so large depth is
required for R/W Table. The consideration on the depth of
R/W Table is shown in section V-C later.

B. Registering to R/W Table

In the proposed find-grain conflict management method,
R/W Table is designed to manage only the cache blocks on
which a transactional conflict has occurred. However, it is
difficult to know in advance which cache block, or which
variable, will be concerned in transactional conflict.

Hence, in the implementation of this method, each cache
block is originally managed by its read bit and write bit, same
as on existing HTM systems. Once a transactional conflict
occurs on a cache block, the cache block is managed by R/W
Table thereafter. Hence, there is no need to statically analyze
workload programs.

If the first transactional conflict on a cache block is a false
conflict, the conflict will cause a futile false stall. However,
the false stall will occur up to only once on each cache block
in the worst case, and second and subsequent transactional
conflicts on the cache block are managed by R/W Table in
fine-grained manner. Hence, one false stall per core will have
little impact on the total performance.

Now, an example where two different transactions are
running concurrently is shown in Fig. 5. Core1 and Core2
in Fig. 5 are executing Thread1 and Thread2 shown in Fig. 2

respectively. In this example, N the number of subsets in each
cache block is defined as four (N = 4), and each cache block
has four integer values on it.

First, the threads start their transactions (t1). Then, Thread1
issues a store on a[0] (t2), and the value of a[0] is modified
(t2+∆). If Ptr associated with the cache block 0x100 does not
have a valid value, an entry on R/W Table is reserved for the
cache block and the index of the entry is stored in Ptr.

In this example, Ptr already has a valid value 00. This
means that a transactional conflict has already occurred on the
cache block, and R/W Table is managing the block. Hence,
the entry 00 of R/W Table is referred and modified (t2+2∆).
If it is the second transactional conflict on the cache block, the
tag value of the block is registered to Tag field of the entry
00, and the bits in R and Wself fields, which are associated
with the accessed address, are set. In this example, Wself

1 [#0]
is set because Thread1 accesses a[0], while Wothers

1 is not
set because the cache block 0x100 is accessed from no other
transactions.

C. Conflict Detection by Referring R/W Table

In the proposed method, when an access request arrives, a
transactional conflict is detected in the fine-grained manner
if an R/W Table entry is already associated to the cache
block. Now, return to the example described in section IV-B.
After t2, Thread2 tries to update a[2] (t3). As shown
in Fig. 6(a), an invalidation request which piggybacks the
address of a[2] is sent from Thread2 (t3+∆). R/W Table in
Core1, which receives the invalidation request, has the entry
associated to the block 0x100, and the entry is referred for
conflict detection (t3+2∆). In the entry, R1[#2], Wself

1 [#2]
and Wothers

1 [#2], which are associated to a[2], are not set,
and no conflict is detected. Then, Thread1 invalidates 0x100
(t3+3∆ in Fig. 6(b)), and clears Ptr of 0x100.

The thread which receives a memory access request is
responsible for conflict detection. However, in this example,
the block 0x100 is invalidated and Core1 never receives any
request about 0x100 hereafter, and Core1 can not detect
any conflict on 0x100. Hence, Core2 should take over the
responsibility for conflict detection on 0x100 from Core1, by
inheriting the past access information managed by Core1. To
handle this, Core1 logically adds Wself

1 and Wothers
1 in the

R/W Table entry which is associated to 0x100, and piggybacks
the result and R1 along the ACK reply to Core2 (t3+4∆).

In this example, R1=0000 and Wself
1 ∨Wothers

1 =1000 are
biggybacked. In this paper, the logical addition of Wself

1 and
Wothers

1 is inscribed as W1. Sending the ACK, Core1 writes
back 0x100 block (t3+5∆).

Receiving the ACK, Core2 knows that now it can access the
block, and caches it (t3+6∆). Simultaneously, Core2 knows
that there have occurred one or more transactional conflicts
on the cache block, by receiving the piggybacked R1 and W1

values. Hence, Core2 registeres an R/W Table entry associated
to 0x100, stores the index 00 to Ptr of the block, and modifies
Wself

2 [#2] for memorizing its write access on a[2]. At this
time, Core2 logically adds its own R2 and R1 received from

Core1 Core2

Core1

R/W Table1

00

(a)

Tag
R1 W1

self W1
others

0x100 0 0 0 0 1 0 0 0 0 0 0 0

Core2

R/W Table2

00

Tag
R2 W2

self W2
others

(t3+∆) Invalid Req
with “&a[2]”

R/W Table1

00

Tag
R1 W1

self W1
others

0x100 0 0 0 0 1 0 0 0 0 0 0 0

R/W Table2

00

Tag
R2 W2

self W2
others

0x100 0 0 0 0 0 0 1 0 1 0 0 0

(b)

(t3+5∆)Write back (t3+6∆) Fill and Write

#0#1 #2 #3#0#1 #2 #3 #0#1 #2 #3 #0#1 #2 #3#0#1 #2 #3#0#1 #2 #3

#0#1 #2 #3#0#1 #2 #3#0#1 #2 #3 #0#1 #2 #3 #0#1 #2 #3#0#1 #2 #3

(t3+4∆) ACK with
R1 , (W1

self∨ W1
others)

Shared Memory

Data
13 68 52 49

Address
0x100-0x10Ca[0-3]

Shared Memory
Data

26 68 52 49

Address
0x100-0x10Ca[0-3]

Tag
0x100

Data R W Ptr
26 68 52 49 0 0 00

Cache1
Tag Data R W Ptr

Cache2(t3+2∆) Refer R/W Table Entry
and Check Conflict

Tag Data R W Ptr
Cache1

(t3+3∆) Invalidate Line
Tag
0x100

Data R W Ptr
26 68 70 49 0 0 00

Cache2
(t3+7∆)

Merge R2 and W2
others

Fig. 6. Conflict detection using R/W Table.

Core1, and stores the result to R2, for inheriting the past access
information which has been managed by Core1. Wothers

2 is
also overwritten with the logical addition of Wothers

2 and W1,
in the same way (t3+7∆). In this way, Core2 can detect
conflicts on a[0] which are resulting from accesses on other
transactions.

D. Discarding Entries on R/W Table

Information about read and write accesses which is managed
in R/W Table is specific to each transaction. Hence, when a
transaction commits or aborts, all entries in R/W Table can be
discarded.

As described in section III-B2, when a transaction is
aborted, only the logged values, which are associated to the
modified cache block subsets, should be written back to the
memory. This is implemented by masking the logged cache
block with Wself .

For example in Fig. 6, consider that Thread1 aborts its
transaction after t4 shown in Fig. 2. In this case, Thread1
can restore only the necessary values by masking the logged
cache block with Wself

1 =1000 as shown in Fig. 7.

V. PERFORMANCE EVALUATION

This section describes about the evaluation results, and the
estimation of additional hardware cost and overhead.

A. Evaluation Environment

We implement the proposed method on LogTM[5], dis-
tributed as a module for GEMS[6], and evaluate it on Wind
River Simics[7]. Simulation parameters are shown in TA-
BLE I. The access latency for R/W Table is defined as three

Core1’s Log

R/W Table1

0x100 1 0 0 0

Cache1

Overwrite

Tag

0x100

Data

13 68 52 49

Tag

0x100

Data

26 68 52 49

#0 #1 #2 #3
W1

self

Keep

Fig. 7. Masking restoring values by Wself .

TABLE I
SIMULATION PARAMETERS

Processor SPARC V9
#cores 16 cores
clock 4 GHz
issue width single
issue order in-order
non-memory IPC 1

L1 I&D cache 32 KBytes
ways 4 ways
latency 3 cycle
line size 64 Bytes

L2 cache 8 MBytes
ways 8 ways
latency 34 cycles
line size 64 Bytes

L2 Directory Full-bit vector sharers list
latency 6 cycles

Memory 4 GBytes
latency 500 cycles

Interconnect network 2D mesh topology
link latency 3 cycles
link bandwidth 64 Bytes

cycles, which is same as L1 cache. The reason is that R/W
Table can be implemented with much smaller RAM than L1
cache, as described in section V-C later. The workloads are
Prioqueue and Slist from GEMS micro-benchmark suite, and
Kmeans and Vacation from STAMP[8] benchmark suite.

B. Evaluation Results

Fig. 8 shows the evaluation results. The legend shows the
breakdown items of the total cycles;

inTX :cycles in transactions
outTX :cycles out of transactions
FalseStall-inTX :false stall cycles in transactions
FalseStall-outTX :false stall cycles out of transactions

Each program was evaluated with five models as shown
below, where N is the assumed number of subsets in each
cache block, and executed with 16 threads. Each bar is
normalized to the total cycle of the baseline (B).

(B) LogTM (baseline)
(T2) proposed model (N = 2)
(T4) proposed model (N = 4)
(T8) proposed model (N = 8)
(T16) proposed model (N = 16)

0

0.2

0.4

0.6

0.8

1.0

1.2
FalseStall-inTX inTX

outTXFalseStall-outTX

ex
ec

u
ti

o
n
 c

y
cl

es
 r

at
io

(B) LogTM (baseline)

(T2) Fine-Grain Conflict Management (N = 2)

(T4) Fine-Grain Conflict Management (N = 4)

(T8) Fine-Grain Conflict Management (N = 8)

(T16) Fine-Grain Conflict Management (N = 16)

Prioqueue

GEMS microbench STAMP

Slist Kmeans Vacation

Fig. 8. Execution cycles ratio

For the simulation of multi-threading on a full-system
simulator, the variability performance [9] must be considered.
Hence, we tried 10 times on each benchmark, and measured
95% confidence interval. The confidence intervals are illus-
trated as error bars in Fig. 8.

All models reduced FalseStall-inTX and FalseStall-outTX
in all programs. The result of the experiment shows that the
model (T16) can improve the performance 89.4% in maximum,
and 26.3% in average.

First, FalseStall-outTX is reduced in Prioqueue, Slist and
Vacation. Especially in Slist, in which FalseStall-outTX ac-
counts for a large percentage, total cycles were reduced
significantly by avoiding false stalls. Incidentally, FalseStall-
outTX in Slist was reduced by the model (T2) as much as
(T16). Investigating the cause, it is found that allocation for
different two variables is greatly related to it. The tail of the
allocated area for one variable is on the head of a cache block,
and the head of the other variable is on the tail of the same
cache block. Hence, in Slist, it is enough to divide a cache
block into two subsets.

On the other hand, in Prioqueue and Kmeans, inTX is
slightly reduced. The reason is that, by avoiding false stall, the
number of stalled transactions is reduced and less transactions
will abort than baseline (B). This makes the cycles for aborting
and backoff smaller, and inTX decreases.

In Vacation, execution cycles are reduced by solving
FalseStall-outTX and FalseStall-inTX, and there is no much
difference among the performance of four proposed models, as
same as Slist. In this program, different variables are defined as
thread-local storages, and the variables are placed on a cache
block at a distance each other. Thus, it is enough to divide the
cache block into two subsets for avoiding false conflicts on
the cache block.

TABLE II
EXECUTION CYCLES RATIO WITH PADDING MODEL

(B) (P) (T2) (T4)　 (T8) (T16)
Slist 1.00 0.12 0.11 0.10 0.10 0.10
Vacation 1.00 1.63 0.96 0.96 0.97 0.96

TABLE III
REQUIRED R/W TABLE ENTRIES IN (T16)

GEMS Max Ave STAMP Max Ave
Prioqueue 10 8.9 Kmeans 13 11.0
Slist 3 3.0 Vacation 21 16.4

Now, in both of Slist and Vacation, false stalls account for a
large percentage, and naive padding method may also relieve
the programs. Hence, we have examined the effect of padding
method on these programs. TABLE II shows the cycles ratio
of the four fine-grained conflict management models and the
padding model (P). Each value is normalized to the total cycle
of (B). In these two programs, FalseStall-inTX and FalseStall-
outTX are reduced by the model (P) as much as the four
proposed models. However, the total performance of Vacation
declines no less than 63%. This is because that locating data on
different cache blocks leads to low spatial locality and raises
cache miss rate. Especially in Vacation, multiple threads share
some tree structures, and sequential accesses to the tree nodes
bring a lot of cold start misses in inTX and outTX. On the
other hand, the proposed models could avoid false stall without
raising cache miss rate very much.

The traditional problem caused by false sharing was only
high cache miss ratio, and the performance was deteriorated
by cache miss penalties. However on HTM systems, false
sharing also brings false stall, because transactional conflicts
are treated equally to cache conflicts. The overhead incurred
from false stall is incomparably larger than the overhead from
cache misses, and it can cause a substantial performance
loss as in Slist. Hence, it is very important to reduce the
overhead from false stall, and the proposed fine-grain conflict
management can achieve this.

C. Hardware Costs

In the proposed HTM system, the depth of R/W Table
should be as much as the number of conflicted cache blocks.
We have evaluated how many R/W Table entries are required.
The result is shown in TABLE III. As we can see, if R/W
Table has 21 entries, overflow does not occur with these four
programs. Here, Tag field is 58-bit width, and each of R, Wself

and Wothers needs 16-bit width when N = 16. Consequently,
one R/W Table can be implemented with a RAM which has
106-bit width and 21 rows. Hence, for 16 core processor, the
hardware cost is about 4.5KBytes in total. If N = 2, the
hardware cost is only about 2.7KBytes.

D. Overhead for Referring R/W Table

In this section, the overhead for referring R/W Table is
estimated. The overhead can simply expressed as C×T , where
C is how many times R/W Table is referred, and T is the

TABLE IV
AVERAGE COUNT OF REFERRING R/W TABLE IN (T16)

GEMS STAMP
Prioqueue 4542.6 Kmeans 187.8
Slist 97.4 Vacation 769.1

access latency for R/W Table. TABLE IV shows the average
count of R/W Table reference in executing the benchmark
programs with model (T16). In Prioqueue, which has the most
reference count, the overhead cycles can be calculated as
4542.6 × 3, and is about 13 thousands. On the other hand,
the total cycles of Prioqueue is about six millions. Hence, the
overhead ratio is only 0.2 percent.

VI. CONCLUSION

In this paper, we proposed a fine-grain transactional conflict
management for eager version management HTM systems.
Through an evaluation with microbench in GEMS and STAMP
benchmark programs, it is found that the proposed method
can improve the performance 89.4% in maximum, and 26.3%
in average. Our future work includes the improvement of
R/W Table usability. Under the case where conflicts occur
on many cache blocks, R/W Table can be overflowed. An
easy way to break the situation is to randomly clear some
entries by aborting transactions. However, considering the
contribution of each entry may provide more efficient R/W
Table management.

ACKNOWLEDGMENT

This work was supported in part by MEXT KAKENHI
Grant Number 24500113.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in Proc. 20th Annual Int’l Symp.
on Computer Architecture, May. 1993, pp. 289–300.

[2] J. Torrellas, M. S. Lam, and J. L. Hennessy, “False sharing and spatial
locality in multiprocessor caches,” IEEE Transactions on Computers,
vol. 43, pp. 651–663, 1994.

[3] T. L. Harris, K. Fraser, and I. A. Pratt, “A Practical Multi-word Compare-
and-Swap Operation,” in Proc. 16th Int’l Conf. on Distributed Computing
(DISC’02), 2002, pp. 265–279.

[4] F. Tabba, A. W. Hay, and J. R. Goodman, “Transactional Conflict
Decoupling and Value Prediction,” in Proc. Int’l Conf. on Supercomputing
(ICS’11). ACM, 2011, pp. 33–42.

[5] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: Log-based Transactional Memory,” in Proc. 12th Int’l Symp.
on High-Performance Computer Architecture, Feb. 2006, pp. 254–265.

[6] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood., “Multifacet’s
General Execution-driven Multiprocessor Simulator (GEMS) Toolset,”
ACM SIGARCH Computer Architecture News, vol. 33, no. 4, pp. 92–99,
Sep. 2005.

[7] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hållberg,
J. Högberg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full
System Simulation Platform,” Computer, vol. 35, no. 2, pp. 50–58, Feb.
2002.

[8] C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford
Transactional Applications for Multi-Processing,” in Proc. IEEE Int’l
Symp. on Workload Characterization (IISWC’08), Sep. 2008.

[9] A. R. Alameldeen and D. A. Wood, “Variability in Architectural Simu-
lations of Multi-Threaded Workloads,” in Proc. 9th Int’l Symp. on High-
Performance Computer Architecture (HPCA’03), Feb. 2003, pp. 7–18.

