
Resource Constrained Distributed Constraint Optimization with Virtual Variables
Toshihiro Matsui and Hiroshi Matsuo

Nagoya Institute of Technology
{matsui.t| matsuo}@nitech.ac.jp

Marius Silaghi
Florida Institute of Technology

msilaghi@fit.edu

Katsutoshi Hirayama
Kobe University

hirayama@maritime.kobe-u.ac.jp

Makoto Yokoo
Kyusyu University

yokoo@is.kyushu-u.ac.jp

Abstract

Cooperative problem solving with resource constraints are
important in practical multi-agent systems. Resource con-
straints are necessary to handle practical problems including
distributed task scheduling with limited resource availability.
A dedicated framework called Resource Constrained DCOP
(RCDCOP) has recently been proposed. RCDCOP models
objective functions and resource constraints separately. A
resource constraint is an n-ary constraint that represents the
limit on the number of resources of a given type available
to agents. Previous research addressing RCDCOPs employs
the Adopt algorithm, which is an efficient solver for DCOPs.
An important graph structure for Adopt is the pseudo-tree for
constraint networks. A pseudo-tree implies a partial order-
ing of variables. In this variable ordering, n-ary constrained
variables are placed on a single path of the tree. Therefore,
resource constraints that have large arity augment the depth
of the pseudo-tree. This also reduces the parallelism, and
therefore the efficiency of Adopt. In this paper we propose
another version of the Adopt algorithm for RCDCOP using
a pseudo-tree that is generated ignoring resource constraints.
The proposed method reduces the previous limitations in the
construction of RCDCOP pseudo-trees. The key ideas of our
work are as follows: (i) The pseudo-tree is generated ignor-
ing resource constraints. (ii) Virtual variables are introduced,
representing the usage of resources. These virtual variables
are used to share resources among sub-trees. However, the
addition of virtual variables increases the search space. To
handle this problem, the influence of placement of virtual
variables/resources constraints in the pseudo tree is consid-
ered. Moreover the search is pruned using the bounds defined
by the resource constraints if possible. These ideas are used
to extend Adopt. The efficiency of our technique depends on
the class of problems being considered, and we describe the
obtained experimental results.

Introduction
Cooperative problem solving with resource constraint is im-
portant in practical multi-agent systems. Resource con-
straints are necessary to handle practical problems including
distributed task scheduling with limited resource availabil-
ity. As a fundamental formalism for multi-agent cooperation
the Distributed Constraint Optimization Problem (DCOP)

Copyright c⃝ 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Ali, Koenig, and Tambe 2005; Maheswaran et al. 2004;
Mailler and Lesser 2004; Modi et al. 2005; Petcu and Falt-
ings 2005) has been studied. With DCOPs, the agent states
and the relationships between agents are formalized into a
constraint optimization problem.

A dedicated framework called Resource Constrained
DCOP (RCDCOP) has recently been proposed (Bowring,
Tambe, and Yokoo 2006; Pecora, Modi, and Scerri 2006).
RCDCOP models objective functions and resource con-
straints separately. A resource constraint is an n-ary con-
straint that represents the limit on the number of resources
of a given type available to agents. Multiply-constrained
DCOP with privacy requirements is formalized in (Bowring,
Tambe, and Yokoo 2006). Resource constrained distributed
task scheduling modeled as n-ary constrained DCOPs, and
the algorithm to solve such problems, are presented in (Pec-
ora, Modi, and Scerri 2006). The previous research address-
ing RCDCOPs employs the Adopt algorithm (Modi et al.
2005), which is a basic solver for DCOPs. Adopt depends
on a partial ordering of variables. The ordering is implied by
a pseudo-tree for constraint networks. In this variable order-
ing, n-ary constrained variables are placed on a single path
of the tree. Therefore, resource constraints that have large
arity augment the depth of the pseudo-tree. This also re-
duces the parallelism, and therefore the efficiency of Adopt.

On the other hand, a basic resource constraint is a rather
simple constraint that represents the limitation of the total
usage of resources required by agents. Therefore, it is possi-
ble to allow resource constraints related to different subtrees
in the pseudo-tree. In this paper we propose another version
of the Adopt algorithm for RCDCOP using a pseudo-tree
that is generated ignoring resource constraints. The pro-
posed method reduces the previous limitations in the con-
struction of RCDCOP pseudo-trees. The key ideas of our
work are as follows. (i) The pseudo-tree is generated ig-
noring resource constraints. (ii) Virtual variables are intro-
duced, representing the usage of resources. These virtual
variables are used to share resources among sub-trees. How-
ever, the addition of virtual variables increases the search
space. To handle this problem, influence of placement of
virtual variables/resources constraints in the pseudo tree is
considered. Moreover, the search is pruned using the bounds
defined by the resource constraints, if possible. These ideas
are used to extend Adopt. The efficiency of our technique

x
0

x
1

x
2

x
3

x
4

r
0

r
1

Figure 1: Resource constrained DCOP

depends on the class of problems being considered, and we
describe the obtained experimental results.

Problem definition
Resource Constrained DCOP (RCDCOP)
A DCOP is defined by a setA of agents, a setX of vari-
ables and a setF of binary functions. Agenti has its own
variablexi. xi takes a value from discrete finite domainDi.
The value ofxi is controlled by agenti. The cost of an as-
signment{(xi, di), (xj , dj)} is defined by a binary function
fi,j(di, dj) : Di × Dj → N. The goal is to find a global
optimal solutionA that minimizes the global cost function:∑

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj).
In RCDCOP resource constraints are added to DCOP. Re-

source constraints are defined by a setR of resources and a
set U of resource requirements. A resourcera ∈ R has
its capacity defined byC(ra) : R → N. Each agent re-
quires resources according to its assignment. For assign-
ment(xi, di) and resourcera, a resource requirement is de-
fined by ui(ra, di) : R × Di → N. For each resource,
the total amount of requirements must not exceed its capac-
ity. The global resource constraint is defined as follows:
∀r ∈ R,

∑
ui∈U, {(xi,di)}⊆A ui(r, di) ≤ C(r). The re-

source constraint takes arbitral arity.
An example of RCDCOP that consists of 5 variables and

2 resources is shown Figure 1. In this example,x0, x2 and
x3 are constrained by resourceR0. x0, x1 andx4 are con-
strained by resourceR1.

Background : Solving RCDCOP using Adopt
In previous work, the Adopt algorithm is employed to solve
n-ary resource constrained DCOP. Adopt is a DCOP solver
using a pseudo-tree for a constraint network. In this section,
a brief description of pseudo-trees, Adopt and an extension
of Adopt for n-ary constraints will be shown.

Pseudo-tree
The Adopt algorithm depends on a variable ordering defined
by a pseudo-tree. The pseudo-tree is generated using a depth
first search for the constraint network in the preprocessing of
Adopt. The edges of the original constraint network are cat-
egorized into tree edges and back edges of the pseudo-tree.
The tree edges represent the partial order relation between
two variables. There is no edge between different subtrees.
By employing this property, Adopt performs search process-
ing in parallel.

Adopt
Adopt(Modi et al. 2005) is an efficient distributed constraint
optimization algorithm. The processing of Adopt consists of

two phases as follows.

• Computation of global optimal cost: Each node com-
putes the boundary of the global optimal cost according
to the pseudo-tree.

• Termination: After computation of global optimal cost,
the boundary of the cost is converged to the optimal value
in the root node. Then the optimal solution is decided
according to the pseudo-tree in a top-down manner.

In this paper, important modifications for Adopt are applied
to computation of the global optimal cost. Agenti computes
the cost using information as follows.

• xi: variable of agenti. Value di of xi is sent to lower
neighbor nodes ofxi usingVALUE message.

• current contexti: current partial solution of ancestor
nodes ofxi. current contexti is updated byVALUE
message andcontext of COST messages.

• thresholdi: total amount of cost that is shared with sub-
tree routed atxi. thresholdi is received from parent node
of xi usingTHRESHOLD message.

• contexti(x, d), lbi(x, d)i, ubi(x, d): boundary of optimal
cost for each valued of variablexi and subtree routed
at child nodex. These elements are received from child
nodex usingCOST message.
If current contexti includescontexti(x, d), upper and
lower bounds of cost arelbi(x, d) and ubi(x, d) re-
spectively. If current contexti is incompatible with
contexti(x, d), contexti(x, d), lbi(x, d)i and ubi(x, d)
are reset to{}, 0 and∞ respectively.

• ti(x, d): total amount of cost that is allocated to subtree
routed at child nodex whenxi takes valuedi. ti(x, d) is
sent tox usingTHRESHOLD message.

Computation in agenti is shown as follows. The local
costδi(d) for valued of variablexi andcurrent contexti
is defined as follows.

δi(d) =
∑

(xj,dj)∈current contexti,

j∈upper neighbor nodes of i

fi,j(d, dj) (1)

Upper boundUBi(d) and lower boundLBi(d) for value
d of variablexi and the subtree routed atxi are defined as
follows.

LBi(d) = δi(d) +
∑

j∈child nodes of i

lbi(xj , d) (2)

UBi(d) = δi(d) +
∑

j∈child nodes of i

ubi(xj , d) (3)

Upper boundUBi and lower boundLBi for the subtree
routed atxi are defined as follows.

LBi = min
d∈Di

LBi(d) (4)

UBi = min
d∈Di

UBi(d) (5)

LBi is initialized to 0, whileUBi can be initialized to−∞.

x
0

x
1

x
2

x
3

x
4

r
0

r
1

x
0

x
1

x
2

x
3

x
4

r
0

r
1

VALUE
messages

COST
message

(a) pseudo-tree (b) computation

Figure 2: Serializing of resource constrained variables

Each agenti exchanges messages, and updates local infor-
mation. Eventually, at root noder, global optimal cost con-
verges asLBr = thresholdr = UBr. The global optimal
solution is decided according to the optimal cost. Details of
the Adopt algorithm are shown in (Modi et al. 2005).

Serialization of resource constrained variables
In previous works, a version of the Adopt algorithm using a
basic approach, which serializes resource constrained vari-
ables, is proposed. The pseudo-tree is generated considering
resource constraints. Variables, which are related to an n-ary
constraint, are placed in a single path of a pseudo-tree. For
example, the pseudo-tree shown in Figure 2(a) is generated
from the RCDCOP shown in Figure 1. In this example,x0,
x2 andx3, which are related to resourcer0, are placed on a
single path of a pseudo-tree.x0, x1 andx4, which are re-
lated to resourcer1, are also placed on a single path. If it is
necessary to serialize variables, extra tree edges are inserted
between nodes. In the example of Figure 2(a), tree edges
(x2,x3) and (x1,x4) are inserted.

In the Adopt algorithm, Resource evaluation nodes,
which evaluate resource constraints, are introduced. A re-
source evaluation node is added as a child node of the low-
est node of serialized nodes. For example, in Figure 2(b),
extra nodesr0 andr1 are added as child nodes ofx3 and
x4 respectively. Each agent sends its value of variable to re-
source evaluation nodes using theVALUE message. Then
the resource evaluation node evaluates the total amount of
resource requirement for its resource. If the resource con-
straint is not satisfied, the resource evaluation node notifies
its parent node using theCOST message. The violation of
the resource constraint is represented by infinity cost. In ad-
dition, it is possible to integrate the resource evaluation node
into its parent node.

In this approach, no modification of the Adopt algorithm
is necessary except adding resource evaluation nodes and
handling infinity cost. However, large arity of resource con-
straint increases the depth of the tree, and reduces paral-
lelism in search processing.

Solving RCDCOP with Resource constraint
free pseudo-tree

In this work, we propose a novel version of the Adopt al-
gorithm for RCDCOP. The proposed algorithm allows re-
source constraints related to nodes in different subtrees. The
pseudo-tree is generated ignoring resource constraints. For
example, the pseudo-tree shown in Figure 3 is generated

x
0

x
1

x
2

x
3

x
4

r
0

r
1

Figure 3: Resource constraint free pseudo-tree

from the RCDCOP shown in Figure 1. In this example,
there is a constraint edge ofr0 between two different sub-
trees, which containx2 andx3 respectively. Similarly, there
is a constraint edge ofr1 betweenx1 andx4.

In the original Adopt, constraint edges, which are placed
among different subtrees, are not allowed. In such case, it
is not possible to generate aCOST message that notifies
parent nodes of the violated solution correctly.

Introduction of virtual variables
The main idea of the proposed method is the introduction of
virtual variables, which represent usage of resources. Each
node shares resources with its parent node and child nodes
using the virtual variables.

Virtual variablevra,i is defined for resourcera and node
xi, which requires resourcera in the subtree routed atxi.
vra,i is owned by the parent node ofxi. vra,i takes a value
from its discrete domain{0, 1, · · · , C(ra)}.

As a simple example, a pseudo-tree, which is related to
a single resource constraint, is shown in Figure 4. In this
example, resourcer0 is related to variablesx0, x1, x2 and
x3. For these resources and variables, virtual variablesvr0,1,
vr0,2 andvr0,3 are introduced. Each virtual variablevra,i

is owned by the parent node ofxi. The value ofvra,i is
controlled by the parent node. Note that root nodex0 does
not have a parent node. Therefore, it is assumed that the
value ofvr0,0 is given from the virtual parent node. In this
case,vr0,0 takes a constant value that is equal to capacity
C(r0) of resourcer0.

Value dra,j of virtual variablevra,j , which is owned
by agent i, is sent to i’s child node j using the
VALUE message. Therefore, theVALUE message is
modified to contain(xi, di) and additional assignments
(vra,j , dra,j). When nodej receives theVALUE that con-
tains (vra,j , dra,j), nodej updates itscurrent contextj
with new(vra,j , dra,j).

In nodei, assignments of virtual variables for resourcera

should satisfy a constraintca,i as follows.

ca,i : dra,i ≥ ui(ra, di) +
∑

j∈child nodes of i

which requires ra

dra,j (6)

Heredra,i denotes the value ofvra,i, which is received from
the parent node ofi. The assignment(vra,i, dra,i) is con-
tained incurrent contexti. If an assignment does not sat-
isfy the resource constraintca,i, the violation of the resource
constraint is represented by infinity cost.

Each nodei evaluates the boundary of optimal cost for
current contexti. Then the cost information is sent to the
parent node ofi using theCOST message. The context of

x0

x1

x2 x3

r0

x0

x1

x2 x3

vr0,1

vr0,2
vr0,3

vr0,0

(a) pseudo-tree (b) virtual variables

Figure 4: Virtual variables for resource constraint

theCOST message is modified to contain additional assign-
ments for virtual variables ofi’s parent node.

The modification using virtual variables allows pseudo-
trees, which are generated ignoring resource constraints.
However, the additional virtual variables increase the search
space.

Generating virtual variables
In a general case, variables are related to one or more re-
sources. Moreover, variables are related to a subset of whole
resources. Virtual variables are generated according to rules
as follows.

1. Basically, if a subtree routed at nodei’s child nodej
requires resourcera, then nodei owns virtual variable
vra,j . However, the following cases are prioritized as spe-
cial cases.

2. If node i or multiple subtrees routed ati’s child nodes
requirera, then current contexti contains assignment
(vra,i, dra,i). In this case,dra,i is decided as follows.

(a) If no i’s ancestor node requiresra, theni is the root
node forra. In this case,dra,i is initialized as a con-
stant that takes a value equal to capacityC(ra) of ra.

(b) If node i is not the root node forra, then i’s parent
nodeh owns virtual variablevra,i. Therefore,VALUE
messages, which are received fromh, contain assign-
ment(vra,i, dra,i).

3. If nodei requires resourcera and no subtree routed ati’s
child node requiresra, theni is a leaf node forra. In this
case, nodei has no virtual variables forra. Therefore, the
resource constraint is defined bydra,i ≥ ui(ra, di).

4. If multiple subtrees routed ati’s child nodesj ∈ A′ re-
quirera, theni must sharera among child nodesj ∈ A′,
even if nodei does not requirera. Therefore, nodei owns
virtual variables{vra,j |j ∈ A′}.

An algorithm to generate virtual variables is shown in Al-
gorithm 1. In this algorithm, it is assumed that a pseudo-tree
has been generated. For the sake of simplicity, the algorithm
consists of two phases of processing. In the first phase, each
nodei computes a setR−

i of resources that are required by
nodes in the subtree routed at nodei. In the second phase,
each nodei computes a setR+

i of resources that are shared
from nodei or i’s ancestor nodes. According to these results,
nodei generates setXi of own variables. This preprocessing
is performed during or after construction of the pseudo-tree.

Algorithm 1: Generate virtual variables

1 Initiationi{
2 Generate pseudo−tree ignoring resource constraint.
3 if(i is not root node)pi ← parent node of nodei.
4 Ci ← a set of child nodes of nodei.
5 Ri ← a set of resources required by nodei.
6 Xi ← {xi}.
7 if (i is root node){ call Rootwardi(). call Leafwardi(ϕ). } }
8 Rootwardi(){
9 R−

i ← Ri.
10 for eachj in Ci{
11 call Rootwardj() and receiveR−

j . R−
i ← R−

i ∪ R−
j . } }

12 Leafwardi(R+
pi

){
13 R+

i ← ϕ.
14 for eachr in R−

i {
15 n ← number of nodesj s.t.r ∈ R−

j .
16 if (n ≥ 2 or (n = 1 and (r ∈ Ri or r ∈ R+

pi
))){

17 R+
i ← R+

i ∪ {r}. } }
18 for eachj in Ci{
19 for eachr in R−

j {
20 if(r is contained inR+

i) Xi ←Xi ∪ {vrr,j}. }
21 call Leafwardj(R+

i). } }

Growth of search space and efficient methods for
search processing
Additional virtual variables increase the search space. Node
i selects an assignment for a set of variablesXi = {xi} ∪
{vra,j |j ∈ Childreni, ra ∈ Rj}. HereRj denotes a subset
of resources that are required in the subtree routed at nodej.
Cost evaluations in nodei are modified toδi(Di), LBi(Di)
andUBi(Di) respectively. HereDi denotes a total set of
assignments forXi. Moreover, cost information of nodei’s
child nodej is evaluated forXi,j = {xi}∪{vra,j |ra ∈ Rj}.
Therefore, they are modified tolbi(j,Di,j), ubi(j,Di,j),
ti(j,Di,j) andcontexti(j,Di,j) respectively.

As a result of these modifications, the size of the search
space increases exponentially with the number of virtual
variables. To reduce this drawback, additional efficient
methods are necessary.

Pruning for partial solution In nodei, search processing
for Xi is necessary to calculate boundariesLBi andUBi

for optimal cost. The search space increases exponentially
with the number of virtual variables that are contained inXi.
However, it is possible to prune the search processing using
a boundary defined by a resource constraint. If an assign-
ment does not satisfy Equation 6, the cost of the assignment
is ∞. Therefore, the assignment is pruned. A violation of
a resource constraint does not depend on the evaluation of
other resource constraints. If an assignment violates a re-
source constraint forra, the assignment is a violated assign-
ment even if other resource constraints are satisfied.

Cost information of child nodes Cost information of
nodei’s child nodej is modified tolbi(j,Di,j), ubi(j,Di,j),
ti(j,Di,j) andcontexti(j,Di,j) respectively. The memory
space for this information increases exponentially with the
number of virtual variables that are contained inXi,j . How-

0

2000

4000

6000

8000

10000

12000

5 10 15 20

a
v
g
.

n
u
m

.

o
f

m

e
s
s
a
g
e

c
y
c
l
e
s

num. of variables

r=1, k=0.05 (c=1)

N (d=1)

N (d=2)

V (d=1)

V (d=2)

VU (d=1)

VU (d=2)

t=10%

t=30%

t=0%

t=20%

t=70%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5 10 15 20

a
v
g
.

n
u
m

.

o
f

m

e
s
s
a
g
e

c
y
c
l
e
s

num. of variables

r=1, k=0.25

N (d=1)

N (d=2)

V (d=1)

V (d=2)

VU (d=1)

VU (d=2)

t=80%

t=40%

t=70%

t=10%

0

1000

2000

3000

4000

5000

6000

5 10 15 20

a
v
g
.

n
u
m

.

o
f

m

e
s
s
a
g
e

c
y
c
l
e
s

num. of variables

r=1, k=0.5

N (d=1)

N (d=2)

V (d=1)

V (d=2)

VU (d=1)

VU (d=2) t=80%

t=70%

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20

a
v
g
.

n
u
m

.

o
f

m

e
s
s
a
g
e

c
y
c
l
e
s

num. of variables

r=4, k=0.05 (c=1)

N (d=1)

N (d=2)

V (d=1)

V (d=2)

VU (d=1)

VU (d=2)

t=70%

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5 10 15 20

a
v
g
.

n
u
m

.

o
f

m

e
s
s
a
g
e

c
y
c
l
e
s

num. of variables

r=4, k=0.25

N (d=1)

N (d=2)

V (d=1)

V (d=2)

VU (d=1)

VU (d=2)
t=90%

t=80%

t=80%

0

1000

2000

3000

4000

5000

6000

7000

5 10 15 20

a
v
g
.

n
u
m

.

o
f

m

e
s
s
a
g
e

c
y
c
l
e
s

num. of variables

r=4, k=0.5

N (d=1)

N (d=2)

V (d=1)

V (d=2)

VU (d=1)

VU (d=2)

t=50%

t=70%

Figure 5: Message cycles (t: ratio of correctly terminated instances (others: 100%))

ever, in the Adopt algorithm, default initial cost informa-
tion is used when the cost information has not been received
from the child nodes. Moreover, whencurrent contexti is
incompatible withcontexti,j(j,Xi,j), the cost information
is reset to the initial value. Therefore, it is unnecessary to
store the cost information that takes the initial value.

Upper limit of resource usage The proposed method al-
locates resources in a top down manner. This is similar to
the maintenance of Threshold in the original Adopt. How-
ever this processing is speculative. To reduce overestimation
in the allocation, an upper limit of resource usage is consid-
ered. As a part of preprocessing, each node computes its
maximum usage for each resource, and notifies its decen-
dants in a bottom up manner. As a result, each node obtain
upper limits of resource usage for each resource and subtree.
Each node limits resource allocation using the upper limits.

Correctness and complexity of the algorithm
The proposed method uses additional virtual variables. This
modification straightforwardly extends Adopt. In each node,
the original variable and virtual variables can be considered
as one integrated variable. The cost evaluation and invariants
for the integrated variable are the same as the original def-
inition of Adopt. Therefore, the optimality, soundness, and
termination are the same as for Adopt. Proposed method can
detect unsatisfiability (i.e., it reports an infinity cost).

Additional virtual variables exponentially increase search
space. In each node, the original variable and virtual vari-
ables can be considered as one integrated variable. Then the
growth of search space can be considered as the growth of
the domain of the integrated variable.

Evaluation
The efficiency of the proposed method is evaluated by ex-
periments. We used a modified graph coloring problem with
three colors. Resource constraints are added to the origi-

nal problem. The problems are generated using parameters
(n, d, r, k, c, l, u). The total number of nodesn and link den-
sity d are the basic parameters of the graph coloring prob-
lem. The link densityd is set to 1 or 2. In original graph col-
oring problems, this setting of parameters is used to generate
a low constrained problem. However, the problem contains
additional resource constraints as follows.

Parameterr determines the number of resources.c =
⌈n × k⌉ determines the capacity of a resource.l determines
the arity of a resource constraint. In this problem setting,
each variable is related to at least one resource constraint.
For the sake of simplicity, the usage of a resource, which is
required by an agent, is limited to 0 or 1. This means that
each agent requires a unit amount of a resource or does not
require one at all. Parameteru represents the ratio of a vari-
able’s values that require a resource. In these experiments
u is set to 2

3 . Each problem instance is generated so that
at least one assignment globally satisfies the resource con-
straint. The experiment is performed for 10 instances for
each setting. We evaluated three versions of Adopt as fol-
lows: Local serialization of resource constrained variables
(N), virtual variable (V) and virtual variable with upper limit
of resource usage (VU). Each experiment is terminated at
9999 cycles. In that case, the 9999 cycles is considered as
total number of message cycles.

Total number of message cycles is shown in Figure 5. In
these results, the shapes of the graphs are not monotonic.
The reason for the non-monotonicity is that the difficulty of
the problem cannot be completely controlled.

In the case ofr = 1, message cycles of the competing
method are greater than the proposed methods. In this case,
the competing method generates a linear graph as a pseudo-
tree. The linear pseudo-tree causes a delay in the processing
of Adopt. On the other hand, the proposed method generates
a pseudo-tree ignoring resource constraints. Therefore, the
processing of Adopt is performed in parallel. However, in
the case ofr = 4, k = 0.25 and0.5, the proposed method

Table 1: Size of pseudo-trees and dimension of assignments
(n=20)

d r l avg.max. avg. avg.max.
depth of branch. dim. of

pseudo tree factor assign.
N V N V

1 1 20 20.0 5.3 1.0 3.5 9.6
4 5 10.8 5.3 1.2 3.5 13.0

2 1 20 20.0 11.2 1.0 1.5 3.7
4 5 15.2 11.2 1.2 1.5 6.8

Table 2: execution time (n=20)
k d r c l execution time (s)

N V VU
0.05 1 1 10 20 1.786 0.007 0.008

4 1 5 0.021 0.242 0.253
2 1 10 20 2.010 0.350 0.363

4 1 5 0.944 3.885 4.167
0.5 1 1 10 20 0.507 32.524 0.940

4 3 5 0.002 334.243 26.162
2 1 10 20 1.089 5.656 1.491

4 3 5 0.073 490.274 251.030

takes a larger number of cycles than the competing method.
In this problem, the proposed method generates multiple vir-
tual variables for each node of a pseudo-tree. Therefore, the
search space of the proposed method is increased.

On the other hand, in the case ofr = 4, k = 0.05, the
proposed method takes smaller message cycles. In this case,
resource constraints are rather tight. Therefore, local serial-
ize version of Adopt generates large number of infinity cost
messages. This also increases message cycles.

Results related to generated pseudo-trees and the dimen-
sion of assignments are shown in Table 1. In the competing
method N, the depth of the pseudo-tree increases when the
number of resources is small.

In the proposed method, the dimension of the assignment
for each node increases with the number of resources. The
dimension also depends on the branching factor. The total
number of cost information that is recorded in each node
increases with the dimension of assignment.

The total execution time is shown in Table 2. The exper-
iment is performed on a machine with a 1.6GHz Itanium2
processor and 32GB memory. The execution time depends
on the total number of message cycles and computation cost.
This result includes instances which were teminated at 9999
cycle. The cost increases in the following order: N, V, VU.
In the case ofr = 1, k = 0.5, the efficient method of VU
reduces execution time.

Conclusion
We proposed a distributed constraint optimization method
for RCDCOP using a pseudo-tree that is generated ignoring
resource constraints. The proposed method allows resource
constraints related to different subtrees in the pseudo-tree.
The main idea is to introduce a special set of virtual vari-
ables that represents the usage of resources. The addition
of virtual variables increases the search space. To handle
this problem, influence of placement of virtual variables/re-
sources constraints in the pseudo tree is considered. More-

over, the search is pruned using the bounds defined by the
resource constraints, if possible. The proposed method re-
duces the previous limitations in the construction of RCD-
COP pseudo-trees. The efficiency of our technique depends
on the class of problems being considered, and we described
the obtained experimental results.

Virtual variables increase the search space of the internal
processing of agents. In this paper, only a basic boundary
is used to prune the search. Additional variable ordering,
forward checking and branch-and-bound methods (Freuder
and Wallace 1992) are necessary for more efficiency. The
proposed approach using virtual variables can be applied to
other pseudo-tree based DPOP algorithms (Petcu and Falt-
ings 2005; 2006).

Analysys of pseudo-trees to improve the efficiency of the
proposed method and better representation of boundaries to
prune the search processing, will be included in future work.

Acknowledgments
This research was partially supported by the Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-Aid for Sci-
entific Research (B), 19300048, 2007.

References
Ali, S. M.; Koenig, S.; and Tambe, M. 2005. Prepro-
cessing techniques for accelerating the DCOP algorithm
ADOPT. In 4th International Joint Conference on Au-
tonomous Agents and Multiagent Systems, 1041–1048.
Bowring, E.; Tambe, M.; and Yokoo, M. 2006. Multi-
ply constrained distributed constraint optimization. In5th
International Joint Conference on Autonomous Agents and
Multiagent Systems, 1413–1420.
Freuder, E. C., and Wallace, R. J. 1992. Partial constraint
satisfaction.Artificial Intelligence58(1):21–70.
Maheswaran, R. T.; Tambe, M.; Bowring, E.; Pearce, J. P.;
and Varakantham, P. 2004. Taking DCOP to the Real
World: Efficient Complete Solutions for Distributed Multi-
Event Scheduling. In3rd International Joint Conference
on Autonomous Agents and Multiagent Systems, 310–317.
Mailler, R., and Lesser, V. 2004. Solving distributed
constraint optimization problems using cooperative media-
tion. In3rd International Joint Conference on Autonomous
Agents and Multiagent Systems, 438–445.
Modi, P. J.; Shen, W.; Tambe, M.; and Yokoo, M. 2005.
Adopt: Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence 161(1-
2):149–180.
Pecora, F.; Modi, P.; and Scerri, P. 2006. Reasoning About
and Dynamically Posting n-ary Constraints in ADOPT. In
7th International Workshop on Distributed Constraint Rea-
soning, at AAMAS, 2006.
Petcu, A., and Faltings, B. 2005. A Scalable Method for
Multiagent Constraint Optimization. In9th International
Joint Conferece on Artificial Intelligence, 266–271.
Petcu, A., and Faltings, B. 2006. O-DPOP: An algorithm
for Open/Distributed Constraint Optimization. InNational
Conference on Artificial Intelligence, 703–708.

