APPLYING DISTRIBUTED CONSTRAINT OPTIMIZATION METHOD TO
DYNAMIC PROBLEM

Toshihiro Matsui and Hiroshi Matsuo
Department of Electrical and Computer Engineering
Nagoya Institute of Technology
Gokiso-cho,Showa-ku,NAGOYA,466-8555,JAPAN
email: {tmatsui@mars.elcom.,matsug@ech.ac.jp

ABSTRACT

A framework which applies distributed constraint opti-
mization method using depth first search tree to dynamic
problem is proposed. The proposed framework is consid-
ered as a basic model of multi agent system. The agents
communicate with each other to solve the problem. Con-
straint network for the problem is built. Trees, which are
similar to depth first search tree for the constraint net-
work, are built in a bottom-up manner. The problem is
solved by distributed constraint optimization algorithm us-
ing the trees. Each distributed processing is executed asyn-
chronously and the framework follows dynamic problem.
KEY WORDS

Multi Agent Systems, Dynamic Problem, Distributed
Search, Constraint Optimization, Self Organization

1 Introduction

Distributed constraint optimization problem (DCOP)
[1][2][3] is an extended distributed constraint satisfaction
problem (DCSP)[4]. DCOP is considered as a basic dis-
tributed cooperation problem and it is an important area of
study of multi agent system. Distributed search algorithms,
which use depth first search (DFS) tree of constraint net-
work, were proposed for DCSP and DCOPJ5][6]. In the
algorithms, agents are placed in DFS tree. There are no
constraints between sub-trees of DFS tree. The parallelism
of sub-trees makes effectiveness in search processing.

Basic distributed algorithms for construction of DFS
tree [9] emulate sequential depth first search. On the other
hand, the search algorithms, which uses DFS tree are ap-
plicable to any tree which has no constraints between sub-
trees, even if the tree is not exact DFS tree of constraint
network. An idea to build the tree in a bottom up manner is
shown in [5]. The pseudo DFS tree is considered as a span-
ning tree of constraint network, and it is also important for
self organization of agents.

Dynamic constraint satisfaction problem[7][8] is an
extended CSP. Dynamic CSP is formalized as a sequence of
CSPs which have different sets of constraints, and the prob-
lems are solved in order. Generally, distributed environ-
ments including multi agent system are dynamic. There-
fore the application of DCSP and DCOP to dynamic envi-
ronment is important for practical purposes. For this rea-
son, not only search of solution but also construction of

problem and determination of solution should be realized
by distributed algorithms. However, in most study of DCSP

or DCOP, it is assumed that snapshot or global terminate
detection algorithms are available for pre/post-processing
of the search.

In this paper, we present a dynamic framework based
on Adopt algorithm[6]. Our most important aim is how
to implement the algorithm for dynamic distributed sys-
tem. Constraint network for the problem is built. Trees
which are similar to depth first search tree for the constraint
network are built in a bottom-up manner. The problem is
solved by distributed constraint optimization algorithm us-
ing the trees. Each distributed processing is executed asyn-
chronously and the framework follows dynamic problem.

2 Dynamic distributed constraint optimiza-
tion problem

Dynamic CSP is formalized as a sequence of CSPs which
have different set of constraints, and the problems are
solved in order. Dynamic distributed constraint satisfac-
tion/optimization problem (DyDCSP/DyDCOP) is an ex-
tended DCSP/DCOP. Variables and constraints of the prob-
lem are distributed into agents. The problem is solved by
distributed algorithm. In this paper, an instance of DyD-
COP is considered.

Let A denote set of all nodes (agents). Each node
1 € A has avariable;. The variabler; takes a valué; in
its domainD,. Only node: is able to determine its value of
x;. In the following, we may use; instead of node for
the sake of simplicity.

Let P denote a sequence of problems. Let=
{po, - ps, -} ps = (Cs,Fs). Cs is set of all con-
straints. F; is set of cost function related to the constraint.
For current problenp,, a binary constraing; ; € C re-
latesz; to ;. Cost of the assignmeR{(z;,d;), (z;,d;)}
is evaluated using; ; € F,. Global cost of the problem
is conjunction (sum) of; ; for all ¢; ;. Optimal solution is
the whole assignment which minimizes global cost. Cur-
rent problenp, changes into next problem ., according
to arbitrary schedule. The solution must be obtained for
each problem before the problem changes.

Nodes have globally consistent knowledge of name
and domain of variables (nodes). However, each constraint
is observed by two nodes or only one node related to the

constraint. Therefore each node must obtain knowledge of
constraints related to it before the problem is solved.

Each node has FIFO communication links to other
nodes. We assume that nodes and communication links
does not have any failure.

3 Construction of constraint network
Node: uses logical clock in order to identify current state
of nodes. Letlk; denote current logical time of the clock.
When known constraints or state of nodes are changed,
nodes increments its logical time. Le$ts; denote de-
scription of current state of node Sts; includes infor-
mation about constraints and state of nodes related by the
constraints. Components Sts; are as follows.

o Cout, Fout: set of observed constraints and set of ob-

served cost functions.

e Ci", Fi": set of received constraints and set of re-
ceived cost functions.

e Degi™: set of received degrees.
e Clki™: set of received logical times.
e (;, I;: set of constraints and cost functions.

e Nbr;: set of neighborhood nodes.
For the sake of simplicity, we identify each element of set
using additional characters.

Covt and FP“t are set of constraint and set of cost
function which are observed by nodelf ¢; ; € C?** or
fi; € Ffutis changed, nodemust notify related nodg
of the change. Possible cases of changes are as follows. (1)
Addition of new constraints. (2) Change of constraints. (3)
Disappearance of constraints.

Ci™ and F/™ are the set of constraint and set of cost
function which are received from other nodes. As a result
of observation and receiving, nodknows constrain€; =
Cowt U Ci" and cost functionF; = FPut U F/™. If an
observed constraint and a received constraint overlap, the
constraints must be integrated in an appropriate manner.

Nbr; is set of neighborhood nodes. It means set of
names of the nodes in the strict sensébr; contains all
nodes related by constraintsdry. Degree of nodé is de-
fined to be|Nbr;|. Degi" is set of degrees which is re-
ceived from neighborhood nodes. The information of de-
gree is referred in the process of construction of tree.

Nodei sends messages to related nodes. Each mes-
sage includes logical time stamp on the sendifigh:" is
set of logical times which were most recently received from
nodes inNbr;. Node: increments its logical time when its
state is changed or new logical time is received.

clk; « max(clk; +a,maxclk; € ClkI")
J

1 state of nodé has changes
0 otherwise
Node: must notify neighborhood nodes about the change
of its state when the node increments its logical time. Mes-
sages of the notification is as follows.

(1) (STS.L,ceut, fout |Nbryl,clk;)

1,5 *i,g 1

(2) (STS.2,|Nbri|clks)
(3) (STS3,clk;) (4) (STS4,clk:)

a =

Figure 1. An example of construction of tree

Destination node of the above messages and information in
the messages are as follows. (1) Destination npiere-
lated by a constraint i@'?“*. The information is that new
constraint was added or known constraint was changed. (2)
Destination nodg is related by a constraint not i@?“*
but Ci". The information is that the degree was changed.
(3) Destination nodg is a neighborhood node. The in-
formation is that the constraint which relatesto x; was
removed fromC¢**. If no constraint which relates; to z;
is contained irC¢", nodej is removed fromVbr;. (4) Des-
tination nodej is a neighborhood node. The information is
that the state of nodehas no changes except increase of
Clk‘l

When no changes of constraints are observed in all
nodes, the notification converges. In that situatialt,,
clk;, and elements of'lk;" andClk?"* have equal values
for all node; related to node. If clk; and elements of
CIki™ have values equal tdk, nodei is locally stable at
clk. If nodej is a neighborhood node of node;j must
receive message ofk from node; before it becomes stable
atclk. From this condition, nodéidentifies its stateSts;
asSts; «r When itis locally stable atlk.

4 Construction of pseudo DFS tree

Nodes construct trees of constraint network for each prob-
lem. The tree is considered as a pseudo DFS tree of a
connected component of constraint network. Basic idea of
construction method for the tree is shown in [5]. We rear-
range the method in order to apply it to dynamic problem.
Following method also includes a rule for termination de-
tection of the construction.

Let T'ree; .1, denote description of tree for node
and its current logical timelk;. Each node maintains
only Tree; o1, Of current logical time. Components of
Tree; qr, are as follows.

e C;, F;, Nbr;, Degi™: copies of elements dfts; qx, .

o Nbr_upper;, Nbr_lower;: set of upper neighborhood
nodes and set of lower neighborhood nodes.

e Deg;: set of degrees of related nodes.

e Rel;: set of counts of constraints for related nodes.
o Children;: set of child nodes.

e Ancestors;. set of ancestor nodes.

e parent;. parent node.

e num_of_leaf;: number of leaf nodes.

Ci, F;, Nbr; and Degi™ are copies of elements of
Sts; ik, - Note thatSts; ., may not be obtained fatik;.
On the other hand, nodemaintains'ree; i, Of current
logical time in any case. I6ts; 1, IS not obtained, the

copies are not available. Untits; ., is obtained, node
1 only receivesTREE message as shown in the following.
When current logical time of nodencreases]ree; i, iS
replaced byl'ree; . for next logical timecl;.

Nbr_upper;, Nlbr,loweri C Nbr; are set of upper
neighborhood nodes and set of lower neighborhood nodes.
Each node inVbr; is classified using its name and degree
in Deg!™. An appropriate ordered relation must be defined
for name of nodes. Leteg;, deg; denote degree af j. If

deg; > deg; V (deg; = deg; Ni < j)
thenq is prior to j. This max-degree heuristics improves
parallelism of pseudo DFS tredeg; is set of degrees of
related nodes.Deg; is union setDeg™ U (Uw Degj).
Here Deg; is the set of degree which is received from de-
scendant nodg. Rel; is set of counts of constraint edges
from sub-tree routed atto its ancestor nodes. For node
i, letrel; , € Rel; denote the count of ancestor noke
If Nbr_upper; contains nodé;, rel; ;, is increased by one.
For all child nodes, ifRel; which is received from child
node; containsrel; i, thenrel; i is increased byel;; 1.

Children;, Ancestors; andparent; are set of child
nodes, set of ancestor nodes and parent node ofindabe
all j € Ancestors;, j is prior toi. parent; is the lowest
node which is contained idncestors;. num_of_leaf; is
number of leafs of sub-tree routedqatlf node: is a leaf
node, themum_of_leaf; = 1, otherwisenum_of_leaf;
is sum ofnum_of_lea f; which is received from child node
4 for all child nodes. The number of leaf nodes is referred
in the process of termination of search.

When all child node of is fixed, sub-tree routed at
is fixed. Node sendsSTREE messages tp € Ancestors;,
when its sub-tree is fixed.

(TREE ,parent;,Ancestors;,Deg;,Rel;,
num_of leaf;,clk;)

When nodej receivesTREE message fromi, the mes-
sage is processed as followslncestors; and Deg; are
updated. lfparent; = j, thenRel; andnum_of leaf; are
updated, and is added toChildren;. If clk; of TREE
message is less thafk; of T'ree; .ix;, the message is ig-
nored.

When node receivesTREE message from its child
node, the child node is added €hildren;. Each sub-
tree routed at the child node includes at least one lower
neighborhood node of If Children; contains all child
nodes ofi, rel; ; € Rel; is equal to number of the lower
neighborhood nodes. From this condition, nadixes its
sub-tree ifrel; ; = |Nbr_lower;|. Sub-trees of leaf nodes
are fixed immediately, and sub-trees are fixed up to root
node.

The method does not generate a exact DFS tree, but

a tree which has no constraint edges between sub-trees. If

a parent node and its child node is not related by any con-
straint, a dummy constraint edge is inserted between the
nodes. The constraint is not included in the evaluation of
degree. An example of construction of tree is shown Fig-
ure 1. In the example, a dummy constraint edge is inserted

— VALUE
wk COST
— THRESHOLD

/\

— TERMINATE

Figure 2. Adopt algorithm

between node 1 and node 2.

Tree; i1, depends upots; . If nodes and node
j are neighborhood$ts; i andSts; ., have no contra-
diction between andj. If Sts; 1 IS never obtained, con-
struction of tree forT'reey, o5, is Not completed. Even if
node; fixed its sub-tree, nodéediscardsi'ree; i, When
its logical time is increased.

5 Execution of distributed search algorithm

A search algorithm based on Adopt algorithm[6] is applied
to proposed framework. Itis assumed that agents are placed
in DFS tree before the algorithm is executed. Pseudo DFS
tree shown in previous section is used instead of the DFS
tree. See [6] for details of Adopt algorithm. In the follow-
ing, brief explanation of the algorithm is shown.

Node: hasd; € D;, threshold;, currentContext;,
context;(d, x), lb;(d, x), ub;(d, z) andt;(d, z). d; is value
of its variable. threshold; is cost allocated to sub-tree
routed ati. Node: must satisfy the condition that ac-
tual cost of partial solution for its sub-tree is less than or
equal tothreshold;. currentContext; is cache of par-
tial solution of upper nodescontext;(d,), 1b;(d, z) and
ub;(d, z) are caches of partial solution and corresponding
upper/lower bound of cost. Hekgis a value of its vari-
able, andr is a child node. They are cached for dland
x. t;(d, x) is a cost which is allocated to child nodevhen
d; = d.

Node: evaluates local cost(d). d;(d) is defined to
be sum of values of cost functions for all constraints be-
tweeni and its upper neighborhood nodes. Nad®valu-
atesU B; and L B; which are upper and lower bound of cost
for sub-tree routed at They are calculated using(d),
1b;(d, z) andub;(d,).

Processing of the algorithm is as follows. (1) Node
determines value aof; according toL B; andthreshold;.
The value is sent to its lower neighborhood nodésL(UE
message). (2) Nodesends the value dff B;, LB; and
currentContext; to its parent nodeGOST message). (3)
Nodei determines value df(d, z). The value of sent to its
child nodex whend; = d (THRESHOLD message). (4)
Eventually, L B;, threshold; andU B; have equal values
in root node. Then root node fixds for optimal cost, and
notify its child nodes of the terminatiomTERMINATE
message). When the child nodes find optimal cost, they
terminate in the same manner. Message paths of Adopt
algorithm is shown Figure 2. Modification of the algorithm
is shown in the following.

5.1 Identification of problems

The search algorithm is executed for current tree. When
logical time of a node is increased, the node discards its tree
and search, without any natification. As a result, execution
of current search breaks down. On the other hand, nodes

construct new tree and next search using the tree is started.

Adopt algorithm is a best-first search algorithm using
backtracking. Its worst-case time complexity is exponen-
tial. In dynamic problem, available time for search is lim-
ited. In order to obtain quasi-optimal solution immediately,
we modify the Adopt algorithm as shown in 5.4. When a
guasi-optimal cost is obtained, root node terminates search.
If the problem does not change until solution is fixed, the
solution is refined in next search. A number of search pro-
cessing are repeated for one problenciéf. Each search
processing is identified usingk and sequence numbgl.

In first search for a problensjt is initialized to zero. Oth-
erwise value okit is increased by one in every search pro-
cessing.

Let Adpt; qr, s+ denote the description of Adopt al-
gorithm for node:, logical time clk and sequence num-
bersit. Adpt; .. 1: inCludes variables of Adopt algorithm
shown in the above.Adpt; ¢ 51+ @lso includesC;, Fj,
Nbr;, Nbr_upper;, Nbr_lower;, Children;, parent; and
num_of _lea f; which are copies of elements ®f-ee; ..

Let Adpt$*" denote the description of Adopt algorithm for
current problem of nodgé In order to identify correspond-
ing problem, messages of Adopt algorithm are modified
so that they includelk and sit. Node+i processes only
messages which corresponds4dpt{*”. When node re-
ceives message for previous problem, the message is ig-
nored. Note that nodienever receives any messages corre-
sponding to problems which are more recent tHalpt*".

5.2 Modification of termination

As shown above, when current problem is changed, search
processing for the problem disappears. However, termi-
nation of the algorithm must be synchronized in order to
obtain complete solution. In our framework, the termina-
tion is synchronized using a method similar to two phase
commitment algorithm. If sub-commitment of solution is
completed in first phase, the solution is decided in second
phase. If the root node detects change of its tree before
first phase is completed, the solution is canceled in second
phase. While nodes are waiting for the termination of its
sub-tree, the nodes must prepare for next search. Moreover,
in dynamic problem, previous solution should be backed
up for solution reuse. Therefore three descriptions of
Adopt algorithm are necessary for each node. Aépts"

and Adpti™t denote descriptions for sub-commitment and
backed up of previous solution.

Termination processing foAdpt{"" is modified as
follows. Modified TERMINATE message includes
Zroot ANAOPE. Zr00 IS the Nname of root nodenpt is flag
which indicates whether cost is optimal in root node.

[send (TERMINATE, - - -, Zyoot,0pt,clk;, slt;)]
condition to send:

1 is not a leaf node\
termination condition of Adopt was satisfied.
destinationzx € Children;
post-processing:
Adptf“b — Adpts*". Adpti — Adpt; cik, sit+1-
[when (TERMINATE, ---, Z,00t,0pt,clky, slty)
is received]
Process rules of Adopt.
Recordz,...,: andopt.
Record receiving of TERMINATE message.
[send (TERMINATE _OK, clk;, slt;)]
condition to send:
1 1s a leaf node\
termination condition of Adopt was satisfied.
destination:z,. ¢
post-processing: (same gend TERMINATE])
In order to process decision or cancel of solution, following
processing is added fotdpt:.
[when (TERMINATE _OK, clky, slty) is received]
Record number of ERMINATE _OK messages
which were received.
[send (TERMINATE _COMMIT, clk;, sit;)]
condition to send:
(i is root noden number of TERMINATE _OK
messages which were receivedam_of leaf;)
V (TERMINATE _COMMIT was received).
destinationx € Children;
post-processing:
Adpte™ «— Adpts*®. Delete Adpt.
[when (TERMINATE _COMMIT, clky, slty) is received]
SendTERMINATE _COMMIT .
[send (TERMINATE _CANCEL, clk;, sit;)]
condition to send:
(¢ is a root node\ Adpt{*” was updated)
V (TERMINATE _CANCEL was received)
destinationzw € Children;
post-processing: Deletédpts 2.
[when (TERMINATE _CANCEL, clky, sity) is received]
SendTERMINATE _CANCEL.

5.3 Condition to start search

Adpt; a0 depends uporiree; ;. Therefore search
for Adpt; a0 must be started aftef'ree; i, is fixed.
Tree; qr is fixed in a bottom-up manner, and starting
the search forAdpt; .10 in the same manner is possi-
ble. Each node must receiALUE messages from its
upper neighborhood nodes in order to compute the local
cost. COST message is not sent unfALUE messages
are received from all upper neighborhood nodes. When a
node receiveYALUE messages from all upper neighbor-
hood nodes, search processing of its parent node is already
started. Therefore the parent node is able to rece@8T
message.

When nodei receivesTERMINATE message for
Adpt; s, the node setsldpts™’ = Adpt; qx. sic and
Adpte*™ = Adpt; ar,sie+1- When a node decides its so-
lution by receiving ofTERMINATE _COMMIT message,
its descendant nodes are already prepared for next search.

Therefore, ifsit > 0, starting the search in a top-down
manner is possible.

When node hasAdpts“?, the node must wait for de-
cision or cancel of its solution. On the other hand, the node
receives messages fdelpt{*”. It is possible that the node
receives messages without evaluation of its solution.

Whenopt flag shown in the above indicates optimal
cost, search processing fdrlpt{“" is unnecessary.

Condition to start search is concluded as follows. If
Tree; o for Adpt"" is already fixed andpt flag does
not indicate the optimal cost, then search processing for
Adpt¢r is started. If nodé hasAdpts“?, then node does
not send messages fdelpt$”.

5.4 Modification of schedule of search

In order to obtain quasi-solution immediatetireshold;

of Adopt algorithm should be initialized to a value which
is greater than or equal to optimal cost. Therefore initial
values ofthreshold; andt;(d, x) are set to infinity instead

of zero. This modification restricts backtracking if cost of
current solution is less than or equal to known upper bound.
Only root node controlshreshold,.,,; Using an appropri-
ate schedule. We use a simple schedule as follows.
the beginning of search processingyeshold,,.; IS set
to an objective value. Whethreshold, oot = U DB oot
is satisfied, the search is terminated. Termination condi-
tion of Adopt algorithm is modified to exclude the case of
threshold; = UB; = oo.

5.5 Reuse of previous solution and cost
When Adpté™ is available, initial value ofd$“" of
Adpts* is set to value ofls™* of Adpti™. If Adptem, =
Adptroot7clk,slt A Adptizgt = Adpt'root,clk7slt+la that isa
if the problem does not changes in root node, then initial
value of threshold!r, is determined usindg/ BS™, and
LBEm, of Adpte™,. We usemax(LB™, UBS™ — A)
as initial value. Here\ is a parameter.

When Adpt{™ is not available, initial value off$“"

andthreshold{"" are set to default values.

6 Evaluation
The behavior of the proposed method is evaluated using

simulation. We evaluate cost of best solution which is
obtained until the problem changes. Proposed method
“dadpt” is compared with two distributed search methods
which uses all nodes in the system. As complete method,
we use modified Adopt algorithm “gadpt” which are iden-
tical with dadpt except that all nodes are placed in linear
order. As approximate method, we use Distributed Greedy
Repair method[3] “grpar”. Note that complexity of com-
putation of Distributed Greedy Repair method is less than
proposed method. We assume that communication over-
head is greater than computation.

In gadpt, if a parent node and its child node are not
related by constraint edge, a dummy constraint edge is in-
serted between the nodes. Ordering of the nodes is deter-
mined in a random manner. In second phase of termination
of search, root node multicasts messages to its descendants
in order to reduce message cycle.

In

Table 1. Average cost of best solution(n=40, T=100)

PO P1 P2 P3
mean (var)[m. (v) [m. (v) [m. (v)
#opt. #o. #o. #o.
13,5 (9.73)13.1 (10.04)13.2 (10.18)13.4 (9.38

0 0 0 0
9.3 (6.34) 7.8 (4.68) 6.5 (4.65) 5.7
0 0 0 1
0.0 (0.03) 0.0
36 90 97 100
26.8 (18.51)26.7 (18.11)27.0 (17.42)27.0 (16.68
0 0 0 0
21.1 (15.64)19.0 (13.07)17.5 (11.83)16.6 (10.11
0 0 0 0
15.6 (10.83)13.4 (13.63)12.4 (12.47)11.1 (10.57
0 0 0 0
40.3 (23.02)40.4 (22.65)40.4 (23.75

d| alg.

1|gadpt

grpar (4.20

dadp{ 1.2 (1.25) 0.1 (0.22 (0.00

2| gadpt

grpar
dadpt

3|gadpt 40.2 (24.58

33.4 (15.47)30.6 (15.65)28.4 (15.03)27.0 (13.51

grpar
dadpt
Table

d| alg.

32.4 (40.74)31.7 (47.45)30.0 (45.54)29.0 (50.96

cost of best solution(n=40, T=500)

PI P3
vy [m. V)

(7.03

2. Average

PO
mean (var.)| m.
#opt.

5.6

1|gadpt (5.68 (7.28
1
3.0 (2.49

(0.85 0.41

grpar
2
0.0
100
17.8 (18.33)16.8 (20.03 16.3 (18.14
0 0 0 0
11.7 (7.44) 6.8 (4.31 4.0
0 0 0 1
3.3 (4.67) 1.6 (2.74 1.1
11 36 63
32.0 (38.46)31.2 30.1 (30.54

dadpt (0.00 (0.00 (0.00

2| gadpt
grpar (2.30

dadpt (1.65

3| gadpt (36.79

22.6 (10.99)16.0 (8.97)13.0 (5.17)11.2 (4.59

grpar

dadpt 19.6 (18.47)18.0 (18.24)17.4 (16.41)16.6 (15.25

In dadpt and gadpt, we uge = (U Bf™ — LB{™) /4
as parameter for initialization ehreshold$"".

Distributed Greedy Repair method is a distributed
version of centralized Greedy Repair method. The sys-
tem consists of a “leader” node and other “member” nodes.
Processing of the algorithm is as follows.

[Distributed Initialization] (1) Leader gives instruction to

all members. (2) Each member natifies its neighborhood
nodes of value of its variable. (3) Each member evaluates
the cost of its partial solution, and notifies leader of the
cost.

[Distributed Greedy Repair] (1) Leader gives instruction

to a member in appropriate order. (2) The member executes
hill climb method. Then the member notifies its neighbor-
hood nodes of new value of its variable, and notifies leader
of difference between new cost and old cost. (3) If total
cost is optimal, leader gives instruction to all members so
that they record current solution. (4) The above processing
is repeated until termination condition is satisfied.

[Distributed Initialization] and [Distributed Greedy
Repair] are repeated for the restart of search. The search is
restarted if no improvement of total cost is obtained within

Table 3. Size of trees

n | d| #rootnodes| max. #depth| max. #nodes
mean (var.)| mean (var.)| mean (var.)

10(1 21 (0.30)| 4.4 (0.40)] 8.7 (0.64)
2 1.0 (0.02)] 6.8 (0.85)| 10.0 (0.02)

3 1.0 (0.00)] 8.3 (0.56)| 10.0 (0.00)
20[1 3.5 (1.08)] 6.4 (0.79)] 16.7 (2.56)
2 1.1 (0.10)] 12.1 (1.58)] 19.9 (0.10)

3 1.0 (0.00)] 14.3 (1.58)] 20.0 (0.00)
401 75 (3.78) 9.4 (1.81)] 32.3 (4.90)
2 1.5 (0.48)] 19.0 (2.47)| 39.5 (0.48)

3 1.1 (0.20)] 24.9 (4.12) 39.9 (0.20)

specified number of cycles. We use number of nodes as the
number of cycles to restart. Termination condition for least
lower bound is not used. It is assumed that multicast of
messages is available. Instead, acknowledge messages for
synchronization is assumed.

We use distributed graph coloring with 3 colors as in
[6]. Each instance of dynamic problems is a sequence of
6 random binary DCOPs. Each DCOP is generatecd:for
andd, wheren is number of nodes and is link density.
Each DCOP has - d constraint edges far andd. Each
constraint is assigned weight of 1. The problem is a maxi-
mum DCSP. Each DCOP is solved according to its ordering
in the sequence. Cost of best solution for each problem is
evaluated. Each problem is changed affecycles. For
eachn, d andT, 10 sequences are generated. For each se-
guences, 10 trials are performed. The results are averaged
for sequences and trials.

In dadpt, itis assumed that each constraint is observed
by only one node. Number of message cycles is evaluated
for total processing. In gadpt and grpar, it is assumed that
observation and pre-processing of search is done using ap-
propriate method. Number of message cycles is evaluated
for search processing.

Average cost of best solution and number of optimal
solution for each problem is shown in Table 1 and 2. In
these tables, results for first four problems are shown (The
problems are denoted by 'P’ and number of ordering). In
these results, improvement of solution rather overcomes
change of problem. Therefore cost of solution decreases in
most casesI’ = 100 or 500 is not enough number of cy-
cles for these search methods. However, in casé-efl,
all solution of proposed method reaches optimal solution
until P3. Adopt algorithm is a complete algorithm. There-
fore, for easy problems which has few number of nodes and
link density, proposed method obtains optimal solution. On
the other hand, even if the problem is not difficult, approxi-
mate method does not reach optimal solution in some cases.
In case ofd = 1,2, each cost of proposed method is less
than or almost equal to corresponding cost of approximate
method. However, in case af = 3,n = 40, each cost
of proposed method is greater than corresponding cost of
approximate method.

Size of trees which are generated by proposed method
is shown in Table 3. Number of root nodes, depth of tree

and maximum number of nodes are evaluated. If link den-
sity is small, depth of tree is small. In cased 1, some
nodes have no constraint, and more than one root nodes are
generated. However, owing to the method to generate prob-
lems, constraint network is not separated into parts of sim-
ilar sizes. The separation of constraint network improves
effectiveness of proposed method.

7 Conclusion
In this paper, we present a basic framework which applies
DCOP algorithm using DFS tree to dynamic problem. Es-
pecially, if constraint network has more than one connected
component, proposal method generates trees for each part
of network. The trees perform separately, therefore it can
be considered as a self organization of multi agent system.
For the sake of simplicity, stable solution and reuse
of context of search which are studied in research of cen-
tralized dynamic CSP, were excluded from our discussion.
Application of proposed method to practical problem will
be included in our future work.

References

[1] J. Liu and K. Sycara, Exploiting problem structure
for distributed constraint optimizatiofroc. 1st Int.
Conf. on Multiagent System$&an Francisco, CA,
1995, 246-253.

2] K. Hirayama and M. Yokoo, An Approach to Over-

constrained Distributed Constraint Satisfaction Prob-

lems: Distributed Hierarchical Constraint Satisfac-
tion, Proc. 4th Int. Conf. on Multiagent Systems

Boston, Massachusetts, 2000, 135-142.

M. Lemaitre and G. Verfaillie, An Incomplete Method

for Solving Distributed Valued Constraint Satisfac-

tion Problems,Proc. AAAI97 Workshop on Con-

straints and Agentsrovidence, RI, 1997.

M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara,

The Distributed Constraint Satisfaction Problem: For-

malization and AlgorithmslEEE Trans. Knowledge

and Data Engineering 18), 1998, 673-685.

Y. Hamadi, Interleaved search in distributed con-

straint networks International Journal on Artificial

Intelligence Tools @), 2002, 167-188.

P. J. Modi, W. Shen, M. Tambe and M. Yokoo, Adopt:

asynchronous distributed constraint optimization with

quality guaranteesAtrtificial Intelligence 16{1-2),

2005, 149-180.

G. Verfaillie and T. Schiex, Solution Reuse in Dy-

namic Constraint Satisfaction Problenioc. 12th

National Conference on Atrtificial Intelligenc&eat-

tle, WA, 1994, 307-312.

R.J. Wallace and E.C. Freuder, Stable solutions for

dynamic constraint satisfaction problenfoc. 4th

International Conference on Principles and Practice

of Constraint ProgrammingPisa, Italy, 1998, 447—

461.

B. Awerbuch, A New Distributed Depth-First-Search

Algorithm, Inf. Process. Lett. 2@), 1985, 147-150.

[3]

(4]

[5]

(6]

[8]

[9]

