
APPLYING DISTRIBUTED CONSTRAINT OPTIMIZATION METHOD TO
DYNAMIC PROBLEM

Toshihiro Matsui and Hiroshi Matsuo
Department of Electrical and Computer Engineering

Nagoya Institute of Technology
Gokiso-cho,Showa-ku,NAGOYA,466-8555,JAPAN

email:{tmatsui@mars.elcom.,matsuo@}nitech.ac.jp

ABSTRACT
A framework which applies distributed constraint opti-
mization method using depth first search tree to dynamic
problem is proposed. The proposed framework is consid-
ered as a basic model of multi agent system. The agents
communicate with each other to solve the problem. Con-
straint network for the problem is built. Trees, which are
similar to depth first search tree for the constraint net-
work, are built in a bottom-up manner. The problem is
solved by distributed constraint optimization algorithm us-
ing the trees. Each distributed processing is executed asyn-
chronously and the framework follows dynamic problem.
KEY WORDS
Multi Agent Systems, Dynamic Problem, Distributed
Search, Constraint Optimization, Self Organization

1 Introduction
Distributed constraint optimization problem (DCOP)
[1][2][3] is an extended distributed constraint satisfaction
problem (DCSP)[4]. DCOP is considered as a basic dis-
tributed cooperation problem and it is an important area of
study of multi agent system. Distributed search algorithms,
which use depth first search (DFS) tree of constraint net-
work, were proposed for DCSP and DCOP[5][6]. In the
algorithms, agents are placed in DFS tree. There are no
constraints between sub-trees of DFS tree. The parallelism
of sub-trees makes effectiveness in search processing.

Basic distributed algorithms for construction of DFS
tree [9] emulate sequential depth first search. On the other
hand, the search algorithms, which uses DFS tree are ap-
plicable to any tree which has no constraints between sub-
trees, even if the tree is not exact DFS tree of constraint
network. An idea to build the tree in a bottom up manner is
shown in [5]. The pseudo DFS tree is considered as a span-
ning tree of constraint network, and it is also important for
self organization of agents.

Dynamic constraint satisfaction problem[7][8] is an
extended CSP. Dynamic CSP is formalized as a sequence of
CSPs which have different sets of constraints, and the prob-
lems are solved in order. Generally, distributed environ-
ments including multi agent system are dynamic. There-
fore the application of DCSP and DCOP to dynamic envi-
ronment is important for practical purposes. For this rea-
son, not only search of solution but also construction of

problem and determination of solution should be realized
by distributed algorithms. However, in most study of DCSP
or DCOP, it is assumed that snapshot or global terminate
detection algorithms are available for pre/post-processing
of the search.

In this paper, we present a dynamic framework based
on Adopt algorithm[6]. Our most important aim is how
to implement the algorithm for dynamic distributed sys-
tem. Constraint network for the problem is built. Trees
which are similar to depth first search tree for the constraint
network are built in a bottom-up manner. The problem is
solved by distributed constraint optimization algorithm us-
ing the trees. Each distributed processing is executed asyn-
chronously and the framework follows dynamic problem.

2 Dynamic distributed constraint optimiza-
tion problem

Dynamic CSP is formalized as a sequence of CSPs which
have different set of constraints, and the problems are
solved in order. Dynamic distributed constraint satisfac-
tion/optimization problem (DyDCSP/DyDCOP) is an ex-
tended DCSP/DCOP. Variables and constraints of the prob-
lem are distributed into agents. The problem is solved by
distributed algorithm. In this paper, an instance of DyD-
COP is considered.

Let A denote set of all nodes (agents). Each node
i ∈ A has a variablexi. The variablexi takes a valuedi in
its domainDi. Only nodei is able to determine its value of
xi. In the following, we may usexi instead of nodei for
the sake of simplicity.

Let P denote a sequence of problems. LetP =
{p0, · · · , ps, · · ·}, ps = (Cs, Fs). Cs is set of all con-
straints.Fs is set of cost function related to the constraint.
For current problemps, a binary constraintci,j ∈ Cs re-
latesxi to xj . Cost of the assignment{(xi, di), (xj , dj)}
is evaluated usingfi,j ∈ Fs. Global cost of the problem
is conjunction (sum) offi,j for all ci,j . Optimal solution is
the whole assignment which minimizes global cost. Cur-
rent problemps changes into next problemps+1 according
to arbitrary schedule. The solution must be obtained for
each problem before the problem changes.

Nodes have globally consistent knowledge of name
and domain of variables (nodes). However, each constraint
is observed by two nodes or only one node related to the

constraint. Therefore each node must obtain knowledge of
constraints related to it before the problem is solved.

Each node has FIFO communication links to other
nodes. We assume that nodes and communication links
does not have any failure.

3 Construction of constraint network
Nodei uses logical clock in order to identify current state
of nodes. Letclki denote current logical time of the clock.
When known constraints or state of nodes are changed,
node i increments its logical time. LetStsi denote de-
scription of current state of nodei. Stsi includes infor-
mation about constraints and state of nodes related by the
constraints. Components ofStsi are as follows.
• Cout

i , F out
i : set of observed constraints and set of ob-

served cost functions.

• Cin
i , F in

i : set of received constraints and set of re-
ceived cost functions.

• Degin
i : set of received degrees.

• Clkin
i : set of received logical times.

• Ci, Fi: set of constraints and cost functions.

• Nbri: set of neighborhood nodes.
For the sake of simplicity, we identify each element of set
using additional characters.

Cout
i and F out

i are set of constraint and set of cost
function which are observed by nodei. If ci,j ∈ Cout

i or
fi,j ∈ F out

i is changed, nodei must notify related nodej
of the change. Possible cases of changes are as follows. (1)
Addition of new constraints. (2) Change of constraints. (3)
Disappearance of constraints.

Cin
i andF in

i are the set of constraint and set of cost
function which are received from other nodes. As a result
of observation and receiving, nodei knows constraintCi =
Cout

i ∪ Cin
i and cost functionFi = F out

i ∪ F in
i . If an

observed constraint and a received constraint overlap, the
constraints must be integrated in an appropriate manner.

Nbri is set of neighborhood nodes. It means set of
names of the nodes in the strict sense.Nbri contains all
nodes related by constraints inCi. Degree of nodei is de-
fined to be|Nbri|. Degin

i is set of degrees which is re-
ceived from neighborhood nodes. The information of de-
gree is referred in the process of construction of tree.

Nodei sends messages to related nodes. Each mes-
sage includes logical time stamp on the sending.Clkin

i is
set of logical times which were most recently received from
nodes inNbri. Nodei increments its logical time when its
state is changed or new logical time is received.

clki ← max(clki + α,max
j

clkj ∈ Clkin
i)

α =
{

1 state of nodei has changes
0 otherwise

Nodei must notify neighborhood nodes about the change
of its state when the node increments its logical time. Mes-
sages of the notification is as follows.

(1) (STS 1,cout
i,j ,fout

i,j ,|Nbri|,clki)

(2) (STS 2,|Nbri|,clki)

(3) (STS 3,clki) (4) (STS 4,clki)

00

1

4

3

2

4

1

3

2

4

1

3

2

0

4

1

3

2

0

Figure 1. An example of construction of tree

Destination node of the above messages and information in
the messages are as follows. (1) Destination nodej is re-
lated by a constraint inCout

i . The information is that new
constraint was added or known constraint was changed. (2)
Destination nodej is related by a constraint not inCout

i

but Cin
i . The information is that the degree was changed.

(3) Destination nodej is a neighborhood node. The in-
formation is that the constraint which relatesxi to xj was
removed fromCout

i . If no constraint which relatesxj to xi

is contained inCin
i , nodej is removed fromNbri. (4) Des-

tination nodej is a neighborhood node. The information is
that the state of nodei has no changes except increase of
clki.

When no changes of constraints are observed in all
nodes, the notification converges. In that situation,clki,
clkj , and elements ofClkin

i andClkin
j have equal values

for all nodej related to nodei. If clki and elements of
Clkin

i have values equal toclk, nodei is locally stable at
clk. If node j is a neighborhood node ofi, nodej must
receive message ofclk from nodei before it becomes stable
at clk. From this condition, nodei identifies its stateStsi

asStsi,clk when it is locally stable atclk.

4 Construction of pseudo DFS tree
Nodes construct trees of constraint network for each prob-
lem. The tree is considered as a pseudo DFS tree of a
connected component of constraint network. Basic idea of
construction method for the tree is shown in [5]. We rear-
range the method in order to apply it to dynamic problem.
Following method also includes a rule for termination de-
tection of the construction.

Let Treei,clki denote description of tree for nodei
and its current logical timeclki. Each node maintains
only Treei,clki of current logical time. Components of
Treei,clki

are as follows.

• Ci, Fi, Nbri, Degin
i : copies of elements ofStsi,clki .

• Nbr upperi, Nbr loweri: set of upper neighborhood
nodes and set of lower neighborhood nodes.

• Degi: set of degrees of related nodes.

• Reli: set of counts of constraints for related nodes.

• Childreni: set of child nodes.

• Ancestorsi: set of ancestor nodes.

• parenti: parent node.

• num of leafi: number of leaf nodes.

Ci, Fi, Nbri and Degin
i are copies of elements of

Stsi,clki . Note thatStsi,clki may not be obtained forclki.
On the other hand, nodei maintainsTreei,clki

of current
logical time in any case. IfStsi,clki is not obtained, the

copies are not available. UntilStsi,clkj is obtained, node
i only receivesTREE message as shown in the following.
When current logical time of nodei increases,Treei,clki is
replaced byTreei,clk′

i
for next logical timeclk′

i.
Nbr upperi, Nbr loweri ⊆ Nbri are set of upper

neighborhood nodes and set of lower neighborhood nodes.
Each node inNbri is classified using its name and degree
in Degin

i . An appropriate ordered relation must be defined
for name of nodes. Letdegi, degj denote degree ofi, j. If

degi > degj ∨ (degi = degj ∧ i < j)
then i is prior to j. This max-degree heuristics improves
parallelism of pseudo DFS tree.Degi is set of degrees of

related nodes.Degi is union setDegin
i ∪

(⋃
∀j Degj

)
.

HereDegj is the set of degree which is received from de-
scendant nodej. Reli is set of counts of constraint edges
from sub-tree routed ati to its ancestor nodes. For node
i, let reli,k ∈ Reli denote the count of ancestor nodek.
If Nbr upperi contains nodek, reli,k is increased by one.
For all child nodes, ifRelj which is received from child
nodej containsrelj,k, thenreli,k is increased byrelj,k.

Childreni, Ancestorsi andparenti are set of child
nodes, set of ancestor nodes and parent node of nodei. For
all j ∈ Ancestorsi, j is prior to i. parenti is the lowest
node which is contained inAncestorsi. num of leafi is
number of leafs of sub-tree routed ati. If node i is a leaf
node, thennum of leafi = 1, otherwisenum of leafi

is sum ofnum of leafj which is received from child node
j for all child nodes. The number of leaf nodes is referred
in the process of termination of search.

When all child node ofi is fixed, sub-tree routed ati
is fixed. Nodei sendsTREE messages toj ∈ Ancestorsi,
when its sub-tree is fixed.

(TREE,parenti,Ancestorsi,Degi,Reli,
num of leafi,clki)

When nodej receivesTREE message fromi, the mes-
sage is processed as follows.Ancestorsj andDegj are
updated. Ifparenti = j, thenRelj andnum of leafj are
updated, andi is added toChildrenj . If clki of TREE
message is less thanclkj of Treej,clkj , the message is ig-
nored.

When nodei receivesTREE message from its child
node, the child node is added toChildreni. Each sub-
tree routed at the child node includes at least one lower
neighborhood node ofi. If Childreni contains all child
nodes ofi, reli,i ∈ Reli is equal to number of the lower
neighborhood nodes. From this condition, nodei fixes its
sub-tree ifreli,i = |Nbr loweri|. Sub-trees of leaf nodes
are fixed immediately, and sub-trees are fixed up to root
node.

The method does not generate a exact DFS tree, but
a tree which has no constraint edges between sub-trees. If
a parent node and its child node is not related by any con-
straint, a dummy constraint edge is inserted between the
nodes. The constraint is not included in the evaluation of
degree. An example of construction of tree is shown Fig-
ure 1. In the example, a dummy constraint edge is inserted

VALUE
COST
THRESHOLD TERMINATE

Figure 2. Adopt algorithm

between node 1 and node 2.
Treei,clk depends uponStsi,clk. If nodei and node

j are neighborhood,Stsi,clk andStsj,clk have no contra-
diction betweeni andj. If Stsi,clk is never obtained, con-
struction of tree forTreek,clk is not completed. Even if
nodei fixed its sub-tree, nodei discardsTreei,clki

when
its logical time is increased.

5 Execution of distributed search algorithm
A search algorithm based on Adopt algorithm[6] is applied
to proposed framework. It is assumed that agents are placed
in DFS tree before the algorithm is executed. Pseudo DFS
tree shown in previous section is used instead of the DFS
tree. See [6] for details of Adopt algorithm. In the follow-
ing, brief explanation of the algorithm is shown.

Nodei hasdi ∈ Di, thresholdi, currentContexti,
contexti(d, x), lbi(d, x), ubi(d, x) andti(d, x). di is value
of its variable. thresholdi is cost allocated to sub-tree
routed ati. Node i must satisfy the condition that ac-
tual cost of partial solution for its sub-tree is less than or
equal tothresholdi. currentContexti is cache of par-
tial solution of upper nodes.contexti(d, x), lbi(d, x) and
ubi(d, x) are caches of partial solution and corresponding
upper/lower bound of cost. Hered is a value of its vari-
able, andx is a child node. They are cached for alld and
x. ti(d, x) is a cost which is allocated to child nodex when
di = d.

Nodei evaluates local costδi(d). δi(d) is defined to
be sum of values of cost functions for all constraints be-
tweeni and its upper neighborhood nodes. Nodei evalu-
atesUBi andLBi which are upper and lower bound of cost
for sub-tree routed ati. They are calculated usingδi(d),
lbi(d, x) andubi(d, x).

Processing of the algorithm is as follows. (1) Nodei
determines value ofdi according toLBi andthresholdi.
The value is sent to its lower neighborhood nodes (VALUE
message). (2) Nodei sends the value ofUBi, LBi and
currentContexti to its parent node (COST message). (3)
Nodei determines value ofti(d, x). The value of sent to its
child nodex whendi = d (THRESHOLD message). (4)
Eventually,LBi, thresholdi andUBi have equal values
in root node. Then root node fixesdi for optimal cost, and
notify its child nodes of the termination (TERMINATE
message). When the child nodes find optimal cost, they
terminate in the same manner. Message paths of Adopt
algorithm is shown Figure 2. Modification of the algorithm
is shown in the following.

5.1 Identification of problems
The search algorithm is executed for current tree. When
logical time of a node is increased, the node discards its tree
and search, without any notification. As a result, execution
of current search breaks down. On the other hand, nodes
construct new tree and next search using the tree is started.

Adopt algorithm is a best-first search algorithm using
backtracking. Its worst-case time complexity is exponen-
tial. In dynamic problem, available time for search is lim-
ited. In order to obtain quasi-optimal solution immediately,
we modify the Adopt algorithm as shown in 5.4. When a
quasi-optimal cost is obtained, root node terminates search.
If the problem does not change until solution is fixed, the
solution is refined in next search. A number of search pro-
cessing are repeated for one problem ofclk. Each search
processing is identified usingclk and sequence numberslt.
In first search for a problem,slt is initialized to zero. Oth-
erwise value ofslt is increased by one in every search pro-
cessing.

Let Adpti,clk,slt denote the description of Adopt al-
gorithm for nodei, logical time clk and sequence num-
berslt. Adpti,clk,slt includes variables of Adopt algorithm
shown in the above.Adpti,clk,slt also includesCi, Fi,
Nbri, Nbr upperi, Nbr loweri, Childreni, parenti and
num of leafi which are copies of elements ofTreei,clk.
Let Adptcur

i denote the description of Adopt algorithm for
current problem of nodei. In order to identify correspond-
ing problem, messages of Adopt algorithm are modified
so that they includeclk and slt. Node i processes only
messages which corresponds toAdptcur

i . When nodei re-
ceives message for previous problem, the message is ig-
nored. Note that nodei never receives any messages corre-
sponding to problems which are more recent thanAdptcur

i .

5.2 Modification of termination
As shown above, when current problem is changed, search
processing for the problem disappears. However, termi-
nation of the algorithm must be synchronized in order to
obtain complete solution. In our framework, the termina-
tion is synchronized using a method similar to two phase
commitment algorithm. If sub-commitment of solution is
completed in first phase, the solution is decided in second
phase. If the root node detects change of its tree before
first phase is completed, the solution is canceled in second
phase. While nodes are waiting for the termination of its
sub-tree, the nodes must prepare for next search. Moreover,
in dynamic problem, previous solution should be backed
up for solution reuse. Therefore three descriptions of
Adopt algorithm are necessary for each node. LetAdptsub

i

andAdptcmt
i denote descriptions for sub-commitment and

backed up of previous solution.
Termination processing forAdptcur

i is modified as
follows. Modified TERMINATE message includes
xroot andopt. xroot is the name of root node.opt is flag
which indicates whether cost is optimal in root node.
[send (TERMINATE, · · ·, xroot,opt,clki, slti)]

condition to send:

i is not a leaf node∧
termination condition of Adopt was satisfied.

destination:x ∈ Childreni

post-processing:
Adptsub

i ← Adptcur
i . Adptcur

i ← Adpti,clk,slt+1.
[when (TERMINATE, · · ·, xroot,opt,clkk, sltk)

is received]
Process rules of Adopt.
Recordxroot andopt.
Record receiving of TERMINATE message.

[send (TERMINATE OK,clki, slti)]
condition to send:

i is a leaf node∧
termination condition of Adopt was satisfied.

destination:xroot

post-processing: (same as[send TERMINATE])
In order to process decision or cancel of solution, following
processing is added forAdptsub

i .
[when (TERMINATE OK,clkk, sltk) is received]

Record number ofTERMINATE OK messages
which were received.

[send (TERMINATE COMMIT, clki, slti)]
condition to send:

(i is root node∧ number ofTERMINATE OK
messages which were received =num of leafi)
∨ (TERMINATE COMMIT was received).

destination:x ∈ Childreni

post-processing:
Adptcmt

i ← Adptsub
i . DeleteAdptsub

i .
[when (TERMINATE COMMIT, clkk, sltk) is received]

SendTERMINATE COMMIT .
[send (TERMINATE CANCEL, clki, slti)]

condition to send:
(i is a root node∧ Adptcur

i was updated)
∨ (TERMINATE CANCEL was received)

destination:x ∈ Childreni

post-processing: DeleteAdptsub
i .

[when (TERMINATE CANCEL, clkk, sltk) is received]
SendTERMINATE CANCEL .

5.3 Condition to start search
Adpti,clk,0 depends uponTreei,clk. Therefore search
for Adpti,clk,0 must be started afterTreei,clk is fixed.
Treei,clk is fixed in a bottom-up manner, and starting
the search forAdpti,clk,0 in the same manner is possi-
ble. Each node must receiveVALUE messages from its
upper neighborhood nodes in order to compute the local
cost. COST message is not sent untilVALUE messages
are received from all upper neighborhood nodes. When a
node receivesVALUE messages from all upper neighbor-
hood nodes, search processing of its parent node is already
started. Therefore the parent node is able to receiveCOST
message.

When nodei receivesTERMINATE message for
Adpti,clk,slt, the node setsAdptsub

i = Adpti,clk,slt and
Adptcur

i = Adpti,clk,slt+1. When a node decides its so-
lution by receiving ofTERMINATE COMMIT message,
its descendant nodes are already prepared for next search.

Therefore, ifslt > 0, starting the search in a top-down
manner is possible.

When nodei hasAdptsub
i , the node must wait for de-

cision or cancel of its solution. On the other hand, the node
receives messages forAdptcur

i . It is possible that the node
receives messages without evaluation of its solution.

Whenopt flag shown in the above indicates optimal
cost, search processing forAdptcur

i is unnecessary.
Condition to start search is concluded as follows. If

Treei,clk for Adptcur
i is already fixed andopt flag does

not indicate the optimal cost, then search processing for
Adptcur

i is started. If nodei hasAdptsub
i , then nodei does

not send messages forAdptcur
i .

5.4 Modification of schedule of search
In order to obtain quasi-solution immediately,thresholdi

of Adopt algorithm should be initialized to a value which
is greater than or equal to optimal cost. Therefore initial
values ofthresholdi andti(d, x) are set to infinity instead
of zero. This modification restricts backtracking if cost of
current solution is less than or equal to known upper bound.
Only root node controlsthresholdroot using an appropri-
ate schedule. We use a simple schedule as follows. In
the beginning of search processing,thresholdroot is set
to an objective value. Whenthresholdroot = UBroot

is satisfied, the search is terminated. Termination condi-
tion of Adopt algorithm is modified to exclude the case of
thresholdi = UBi = ∞.

5.5 Reuse of previous solution and cost
When Adptcmt

i is available, initial value ofdcur
i of

Adptcur
i is set to value ofdcmt

i of Adptcmt
i . If Adptcmt

root =
Adptroot,clk,slt ∧ Adptcur

root = Adptroot,clk,slt+1, that is,
if the problem does not changes in root node, then initial
value of thresholdcur

root is determined usingUBcmt
root and

LBcmt
root of Adptcmt

root. We usemax(LBcmt
i , UBcmt

i − ∆)
as initial value. Here∆ is a parameter.

WhenAdptcmt
i is not available, initial value ofdcur

i

andthresholdcur
i are set to default values.

6 Evaluation
The behavior of the proposed method is evaluated using
simulation. We evaluate cost of best solution which is
obtained until the problem changes. Proposed method
“dadpt” is compared with two distributed search methods
which uses all nodes in the system. As complete method,
we use modified Adopt algorithm “gadpt” which are iden-
tical with dadpt except that all nodes are placed in linear
order. As approximate method, we use Distributed Greedy
Repair method[3] “grpar”. Note that complexity of com-
putation of Distributed Greedy Repair method is less than
proposed method. We assume that communication over-
head is greater than computation.

In gadpt, if a parent node and its child node are not
related by constraint edge, a dummy constraint edge is in-
serted between the nodes. Ordering of the nodes is deter-
mined in a random manner. In second phase of termination
of search, root node multicasts messages to its descendants
in order to reduce message cycle.

Table 1. Average cost of best solution(n=40, T=100)

d alg. P0 P1 P2 P3
mean (var.) m. (v.) m. (v.) m. (v.)
#opt. #o. #o. #o.

1 gadpt 13.5 (9.73) 13.1 (10.04)13.2 (10.18)13.4 (9.38)
0 0 0 0

grpar 9.3 (6.34) 7.8 (4.68) 6.5 (4.65) 5.7 (4.20)
0 0 0 1

dadpt 1.2 (1.25) 0.1 (0.22) 0.0 (0.03) 0.0 (0.00)
36 90 97 100

2 gadpt 26.8 (18.51)26.7 (18.11)27.0 (17.42)27.0 (16.68)
0 0 0 0

grpar 21.1 (15.64)19.0 (13.07)17.5 (11.83)16.6 (10.11)
0 0 0 0

dadpt 15.6 (10.83)13.4 (13.63)12.4 (12.47)11.1 (10.57)
0 0 0 0

3 gadpt 40.2 (24.58)40.3 (23.02)40.4 (22.65)40.4 (23.75)

grpar 33.4 (15.47)30.6 (15.65)28.4 (15.03)27.0 (13.51)

dadpt 32.4 (40.74)31.7 (47.45)30.0 (45.54)29.0 (50.96)

Table 2. Average cost of best solution(n=40, T=500)

d alg. P0 P1 P2 P3
mean (var.) m. (v.) m. (v.) m. (v.)
#opt. #o. #o. #o.

1 gadpt 5.6 (5.68) 3.7 (7.28) 2.8 (8.29) 2.3 (7.03)
1 10 28 38

grpar 3.0 (2.49) 1.1 (0.85) 0.6 (0.58) 0.4 (0.41)
2 29 53 72

dadpt 0.0 (0.00) 0.0 (0.00) 0.0 (0.00) 0.0 (0.00)
100 100 100 100

2 gadpt 17.8 (18.33)16.8 (20.03)16.5 (19.89)16.3 (18.14)
0 0 0 0

grpar 11.7 (7.44) 6.8 (4.31) 4.9 (3.25) 4.0 (2.30)
0 0 0 1

dadpt 3.3 (4.67) 1.6 (2.74) 1.1 (1.71) 1.1 (1.65)
11 36 62 63

3 gadpt 32.0 (38.46)31.2 (36.79)30.3 (32.34)30.1 (30.54)

grpar 22.6 (10.99)16.0 (8.97) 13.0 (5.17) 11.2 (4.59)

dadpt 19.6 (18.47)18.0 (18.24)17.4 (16.41)16.6 (15.25)

In dadpt and gadpt, we use∆ = (UBcmt
i −LBcmt

i)/4
as parameter for initialization ofthresholdcur

i .
Distributed Greedy Repair method is a distributed

version of centralized Greedy Repair method. The sys-
tem consists of a “leader” node and other “member” nodes.
Processing of the algorithm is as follows.
[Distributed Initialization] (1) Leader gives instruction to
all members. (2) Each member notifies its neighborhood
nodes of value of its variable. (3) Each member evaluates
the cost of its partial solution, and notifies leader of the
cost.
[Distributed Greedy Repair] (1) Leader gives instruction
to a member in appropriate order. (2) The member executes
hill climb method. Then the member notifies its neighbor-
hood nodes of new value of its variable, and notifies leader
of difference between new cost and old cost. (3) If total
cost is optimal, leader gives instruction to all members so
that they record current solution. (4) The above processing
is repeated until termination condition is satisfied.

[Distributed Initialization] and [Distributed Greedy
Repair] are repeated for the restart of search. The search is
restarted if no improvement of total cost is obtained within

Table 3. Size of trees

n d #root nodes max. #depth max. #nodes
mean (var.) mean (var.) mean (var.)

10 1 2.1 (0.30) 4.4 (0.40) 8.7 (0.64)
2 1.0 (0.02) 6.8 (0.85) 10.0 (0.02)
3 1.0 (0.00) 8.3 (0.56) 10.0 (0.00)

20 1 3.5 (1.08) 6.4 (0.79) 16.7 (2.56)
2 1.1 (0.10) 12.1 (1.58) 19.9 (0.10)
3 1.0 (0.00) 14.3 (1.58) 20.0 (0.00)

40 1 7.5 (3.78) 9.4 (1.81) 32.3 (4.90)
2 1.5 (0.48) 19.0 (2.47) 39.5 (0.48)
3 1.1 (0.20) 24.9 (4.12) 39.9 (0.20)

specified number of cycles. We use number of nodes as the
number of cycles to restart. Termination condition for least
lower bound is not used. It is assumed that multicast of
messages is available. Instead, acknowledge messages for
synchronization is assumed.

We use distributed graph coloring with 3 colors as in
[6]. Each instance of dynamic problems is a sequence of
6 random binary DCOPs. Each DCOP is generated forn
andd, wheren is number of nodes andd is link density.
Each DCOP hasn · d constraint edges forn andd. Each
constraint is assigned weight of 1. The problem is a maxi-
mum DCSP. Each DCOP is solved according to its ordering
in the sequence. Cost of best solution for each problem is
evaluated. Each problem is changed afterT cycles. For
eachn, d andT , 10 sequences are generated. For each se-
quences, 10 trials are performed. The results are averaged
for sequences and trials.

In dadpt, it is assumed that each constraint is observed
by only one node. Number of message cycles is evaluated
for total processing. In gadpt and grpar, it is assumed that
observation and pre-processing of search is done using ap-
propriate method. Number of message cycles is evaluated
for search processing.

Average cost of best solution and number of optimal
solution for each problem is shown in Table 1 and 2. In
these tables, results for first four problems are shown (The
problems are denoted by ’P’ and number of ordering). In
these results, improvement of solution rather overcomes
change of problem. Therefore cost of solution decreases in
most cases.T = 100 or 500 is not enough number of cy-
cles for these search methods. However, in case ofd = 1,
all solution of proposed method reaches optimal solution
until P3. Adopt algorithm is a complete algorithm. There-
fore, for easy problems which has few number of nodes and
link density, proposed method obtains optimal solution. On
the other hand, even if the problem is not difficult, approxi-
mate method does not reach optimal solution in some cases.
In case ofd = 1, 2, each cost of proposed method is less
than or almost equal to corresponding cost of approximate
method. However, in case ofd = 3, n = 40, each cost
of proposed method is greater than corresponding cost of
approximate method.

Size of trees which are generated by proposed method
is shown in Table 3. Number of root nodes, depth of tree

and maximum number of nodes are evaluated. If link den-
sity is small, depth of tree is small. In case ofd = 1, some
nodes have no constraint, and more than one root nodes are
generated. However, owing to the method to generate prob-
lems, constraint network is not separated into parts of sim-
ilar sizes. The separation of constraint network improves
effectiveness of proposed method.

7 Conclusion
In this paper, we present a basic framework which applies
DCOP algorithm using DFS tree to dynamic problem. Es-
pecially, if constraint network has more than one connected
component, proposal method generates trees for each part
of network. The trees perform separately, therefore it can
be considered as a self organization of multi agent system.

For the sake of simplicity, stable solution and reuse
of context of search which are studied in research of cen-
tralized dynamic CSP, were excluded from our discussion.
Application of proposed method to practical problem will
be included in our future work.

References

[1] J. Liu and K. Sycara, Exploiting problem structure
for distributed constraint optimization,Proc. 1st Int.
Conf. on Multiagent Systems, San Francisco, CA,
1995, 246–253.

[2] K. Hirayama and M. Yokoo, An Approach to Over-
constrained Distributed Constraint Satisfaction Prob-
lems: Distributed Hierarchical Constraint Satisfac-
tion, Proc. 4th Int. Conf. on Multiagent Systems,
Boston, Massachusetts, 2000, 135–142.

[3] M. Lemâıtre and G. Verfaillie, An Incomplete Method
for Solving Distributed Valued Constraint Satisfac-
tion Problems,Proc. AAAI97 Workshop on Con-
straints and Agents, Providence, RI, 1997.

[4] M. Yokoo, E. H. Durfee, T. Ishida and K. Kuwabara,
The Distributed Constraint Satisfaction Problem: For-
malization and Algorithms,IEEE Trans. Knowledge
and Data Engineering 10(5), 1998, 673–685.

[5] Y. Hamadi, Interleaved search in distributed con-
straint networks,International Journal on Artificial
Intelligence Tools 3(4), 2002, 167–188.

[6] P. J. Modi, W. Shen, M. Tambe and M. Yokoo, Adopt:
asynchronous distributed constraint optimization with
quality guarantees,Artificial Intelligence 161(1–2),
2005, 149–180.

[7] G. Verfaillie and T. Schiex, Solution Reuse in Dy-
namic Constraint Satisfaction Problems,Proc. 12th
National Conference on Artificial Intelligence, Seat-
tle, WA, 1994, 307–312.

[8] R.J. Wallace and E.C. Freuder, Stable solutions for
dynamic constraint satisfaction problems,Proc. 4th
International Conference on Principles and Practice
of Constraint Programming, Pisa, Italy, 1998, 447–
461.

[9] B. Awerbuch, A New Distributed Depth-First-Search
Algorithm, Inf. Process. Lett. 20(3), 1985, 147–150.

