
A Speed-up Technique
for an Auto-Memoization Processor

by Collectively Reusing Continuous Iterations
Tomoki IKEGAYA∗, Tomoaki TSUMURA∗, Hiroshi MATSUO∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, Japan

Email: nakashim@is.naist.jp

Abstract—We have proposed an auto-memoization processor
based on computation reuse, and merged it with speculative
multithreading based on value prediction into a parallel early
computation. In the past model, the parallel early computation
detects each iteration of loops as a reusable block. This paper pro-
poses a new parallel early computation model, which integrates
multiple continuous iterations into a reusable block automatically
and dynamically without modifing executable binaries. We also
propose a model for automatically detecting how many iterations
should be integrated into one reusable block. Our model reduces
the overhead of computation reuse, and further exploits reuse
tables. The result of the experiment with SPEC CPU95 FP suite
benchmarks shows that the new model improves the maximum
speedup from 40.5% to 57.6%, and the average speedup from
15.0% to 26.0%.

I. INTRODUCTION

So far, various speed-up techniques for microprocessors
have been proposed. The performance of microprocessors had
been controlled by the gate latencies, and it had been rela-
tively easy to speed-up microprocessors by transistor scaling.
However, the interconnect delay has been going major, and
it has become difficult to achieve speed-up only by higher
clock frequency. Therefore, speed-up techniques based on ILP
(Instruction-Level Parallelism), such as superscalar or SIMD
instruction sets, have been counted on.

Recently, multi-core processors equipped with two or more
cores attract a great deal of attention. They are now in wide use
from generic processors for PCs to embedded processors[1].
The UltraSPARC T2[2] with eight cores, and the TILE64[3]
with 64 cores are available now, and many core processors
such as the TILE-Gx processor[4] with 100 cores are planned
to be shipped.

A program generally forms a poset or a lattice. It has
a length along time axis, and has a width (i.e. parallelism)
orthogonal to time axis. Traditional speed-up techniques men-
tioned above are all based on some parallelisms in different
granularities. In other words, their approaches aim to increase

performance by shrinking the width of the program lattice.
On the other hand, we have proposed an auto-memoization

processor based on computation reuse.[5], [6] In contrast to
traditional speed-up techniques for microprocessors, memo-
ization or computation reuse tries to shrink the length of
the program lattice. As a speedup technique, memoization
has no relation to parallelism of programs. It depends upon
value locality, especially input values of functions. Therefore,
memoization has a potential for breaking through the stone
wall, against which the speedup techniques based on ILP have
been up.

We also have proposed a model called parallel speculative
execution. It predicts the inputs for a reusable loop iteration,
and additional shadow cores execute the iteration speculatively.
The shadow cores register the results of the speculative exe-
cutions onto the reuse table. If the value prediction for inputs
is correct, the registered outputs can be reused by the main
core and execution time will be reduced.

In this paper, we propose a new parallel speculative execu-
tion model which manages some continuous loop iterations as
one reusable computation region. Merging continuous itera-
tions into one reusable region can make reuse overhead lower
and reuse hit-rate higher without any binary modification. How
many continuous iterations should be merged depends on the
characteristics of programs and loops. Hence, we also propose
an algorithm for deciding the number of iterations.

II. RELATED WORKS

Studies for extracting ILPs with speculative executions
based on value prediction have been proposed by Lipasti et.
al.[7] or Wang et. al.[8] Many speculative multi-threading
(SpMT) models also have been proposed. They have multi-
ple processors or cores, and run threads speculatively using
predicted value sets. In an SpMT model, a speculative thread
will generally squashed when its input values are overwritten
by main thread.

2010 First International Conference on Networking and Computing

978-0-7695-4277-5/10 $26.00 © 2010 IEEE

DOI 10.1109/IC-NC.2010.46

63

Roth et. al.[9] has proposed register integration. It is a
mechanism for reusing the results of squashed instructions
by writing back the past register mapping. It is shown that
the model can provide performance improvements of up to
11.5%.

Some hybrid methods of computation reuse and value
prediction have been studied. Wu et. al.[10] have proposed
a speculative multithreading supported by computation reuse.
In the model, the compiler identifies computation region for
reuse or value prediction. At runtime, if a region cannot be
reused, the processor predicts the outpus of the region, and
speculatively execute its following region using the predicted
values. Hence, if the value prediction fails, the speculative ex-
ecutions should be squashed, and it costs additional hardware
and overhead for the squash.

Molina et. al.[11] have proposed a combination model of
speculative thread and non-speculative thread. The execution
results of speculative thread are stored into the FIFO called
a look ahead buffer, and non-speculative thread picks up
instructions from the FIFO. If current source operands and the
stored operands are same, the non-speculative thread reuses the
execution results and skips execution.

In contrast to them, the parallel speculative execution model
we have proposed is a non-symmetric SpMT model based on
the value prediction, and uses computation reuse technique.
Our model has two advantages against [10]. The one is that
there is no need to be assisted by compiler for computation
reuse. The other is that there is no need to squash speculative
executions. Molina’s model [11] and our model are of the
same sort. However, our model can reuse some computation
regions which require memory read as inputs.

III. RESEARCH BACKGROUND

In this section, we describe about an auto-memoization
processor and a parallel speculative execution model as the
background of our study.

A. Auto-Memoization Processor

Computation reuse is a well-known speed-up technique in
the software field. It is storing the input sequences and the
results of some computation regions, such as functions, for
later reuse and avoiding recomputing them when the current
input sequence matches one of the past input sequences. It
is called memoization[12] to apply computation reuse to
computation regions in programs.

Memoization is originally a programming technique for
speed-up, and brings good results on expensive functions.
However, it requires rewrite of target programs, and the
traditional load-modules or binaries cannot benefit from mem-
oization. Furthermore, the effectiveness of memoization is
influenced much by programming styles. Rewriting programs
using memoization occasionally makes the programs slower.
Memoization costs a certain overhead because it is imple-
mented by software.

On the other hand, the auto-memoization processor we have
proposed makes traditional load-modules faster without any

Fig. 1. Memoizable instruction regions.

software assist. There is no need to rewrite or recompile
target programs. The processor detects functions and loop
iterations as reusable regions dynamically, and memoizes them
automatically.

Fig. 1 shows the memoizable instruction regions. A region
between the instruction with a callee label and return
instruction is detected as a memoizable function. A region
between a backward branch instruction and its branch target is
detected as a memoizable loop iteration. This processor detects
these memoizable regions automatically and memoizes them.

The auto-memoization processor consists of the memoiza-
tion engine, MemoTbl and MemoBuf. The MemoTbl is a set
of tables for storing input/output sequences of past executed
computation regions. The MemoBuf works as a write buffer
for MemoTbl. The brief structure of MemoTbl is shown in
Fig.2.

Entering to the memoizable region, the processor refers to
the MemoTbl and compares current input set with former input
sets which are stored in MemoTbl. If the current input set
matches with one of the stored input sets on the MemoTbl, the
memoization engine writes back the stored outputs associated
with the input set to cache and registers. This omits the
execution of the region and reduce the total execution time.

If the current input set does not match with any past input
sets, the processor stores the inputs and the outputs of the
region into MemoBuf while executing the region as usual. The
input set consists of the register/memory values which are read
in the region, and the output set consists of the values which
are written and return value of function. Reaching the end
of the region, the memoization engine stores the content of
MemoBuf into MemoTbl for future reuse.

The MemoTbl consists of four tables. They are
RF: for start addresses of instruction regions.
RB: for input data sets of instruction regions.
RA: for input address sets of instruction regions.
W1: for output data sets of instruction regions.
The RF, RA, and W1 are implemented with RAM. On

the other hand, the RB is implemented with CAM (Content
Addressable Memory) array, so that input matching can be
done fast by associative search.

Each RF line corresponds to a reusable computation region.
One RF line has two groups of fields, the one is for compu-
tation reuse and the other is for the overhead filter which will
be explained later in III-C. The fields for computation reuse

64

Fig. 2. Structure of MemoTbl

store whether the region is a function or a loop (F or L), the
start address of the region (addr.), and previous two input sets
for predicting next input set for parallel speculative execution
(prev. inputs). The fields for overhead filter store the execution
cycles of the region (S), its past reuse overhead (Ovh), and its
past hit rate (hit hist.).

The brief execution mechanism of the auto-memoization
processor is as follows. When the auto-memoization processor
detects a function or a loop iteration, it first searches its start
address through the RF table for deciding the inputs of the
reusable region are stored or not. Then, the input matching
for computatin reuse starts.

The processor reads the value of program counter and
registers, and searches their values from the RB. If one of the
RB lines matches, the processor gets the line index and reads
RA using the index. The RA line has the address for the input
of the region which should be tested next. Next, the processor
gets input value from the cache or main memory using the
address, searches the input value through the RB again, and
so on. If all inputs of a reusable block have matched with one
of the stored input set on the MemoTbl, the processor can get
the output set from W1 by using the index for W1 (called
‘W1 pointer’) stored in the terminal RA entry. The detail of
this execution mechanism is shown in [5], [6].

Meanwhile, accessing MemoTbl causes overhead inevitably.
Through input matching, searching RB, referring RA, and
reading caches cost a certain time. When input matching has
succeeded, outputs of the reusable block should be written
back from W1. This also costs some cycles. We call these
two kinds of overheads ‘reuse overheads.’ For some reusable
blocks, the reuse overhead may outweigh the eliminated
execution cycles by reuse. This will go for some blocks which
have many input values to be tested, and all tiny blocks.

B. Parallel Speculative Execution

As a matter of course, memoization can omit the execution
of a instruction region only if the current input values for
the region match completely with the input values which are
used in former execution. Hence, a loop iteration whose inputs
include its iterator variable never benefits from memoization.

Meanwhile, many of microprocessor companies are switch-
ing to multi-core designs today. There is a story going around

Fig. 3. Structure of a parallel speculative execution.

that processors with hundreds of cores may be delivered in
another decade[13]. But how we can use these many-core pro-
cessors effectively is still under review between researchers.

Speculative multi-threading (SpMT) is an answer to this
question, but it is not so easy to deal with cross-thread depen-
dence violation and thread squash. We installed some SpMT
cores called SpC (speculative cores) to our auto-memoization
processor. These cores help the unsuitable regions for mem-
oization mentioned above. Fig.3 shows the structure of the
auto-memoization processor with SpCs.

Each SpC has its own MemoBuf and a first level data
cache. The second level data cache and MemoTbl is shared
between all cores. While the main core executes a memoizable
computation region, SpCs execute the same region using
predicted inputs, and stores the results into MemoTbl. The
inputs are predicted by stride prediction using the last two
input sets stored in RF. If the input prediction was correct, the
main core can omit intended execution by reusing the result of
SpC. Unlike as traditional speculative executions, even if the
input speculation proves to be incorrect later, the main core
need not to pay a cost for any backout management. This
extension can omit the execution of instruction regions whose
inputs show monotonous increase/decrease.

These SpCs not only omit some executions, but also work
as a cache prefetch technique[14], [15].

C. Overhead Filter

For some reusable regions, reuse overhead may outweigh
the eliminated execution cycles by reuse. This will go for some
regions which have many input values to be tested, and all
tiny regions. Hence, the auto-memoization processor should
estimate the effect of reuse, and avoid memoing unsuitable
instruction regions. This can reduce useless input matching
and contribute to good performance.

For the reusability estimation, we installed a small logic
to MemoTbl. This logic estimates how much cycles will
be reduced by memoing a block, and how much overhead
will cost for its reuse. It is important how to decide which
instruction region should be suitable for parallel speculative
execution. When the results of speculative executions for an

65

instruction region are frequently reused, the instruction region
is supposed to be suitable. Shift registers, shown as hit hist.
fields in Fig.2, are used for recording these reuse frequency.
The reuse overhead of an instruction region can be calculated
from these frequency values.

Assume that M represents the number of successful reuses
about a certain region for recent T times tries. The value of
M can be gotten from hit hist. field in RF. With the execution
cycles S of the region, which can be also got from RF, the
actual cycle gain can be represented as

M · (S − OvhR − OvhW) (1)

where OvhR and OvhW represent search/write-back over-
heads for the region respectively.

OvhR also costs when input matching fails and reuse cannot
be applied. This overhead can be calculated as follows.

(T − M) · OvhR (2)

Here, if the loss (2) is larger than the actual gain (1), the
computation region cannot be suitable for reuse. Now, we
define the difference between (1) and (2) as Gain (3). An
additional small logic calculates whether (3) goes positive or
negative, and decides the suitability of computation regions.

Gain = M · (S − OvhW) − T · OvhR (3)

IV. REUSING CONTINUOUS ITERATIONS COLLECTIVELY

In this section, we will propose a new parallel speculative
execution model for managing loop iterations more effectively.

A. Outline

As mentioned in the previous section, the parallel specula-
tive execution works effectively for loops whose inputs change
monotonously. However, the effectiveness will be limited
when the loop body is not so heavy or the loop has numerous
iterations.

When the loop body is not so heavy, little speed-up can be
gained by reuse, because almost all omitted execution cycles
will be offset by its reuse overhead. When the number of
iterations is large, many parallel speculative executions will
be committed by SpCs and the many results of speculative
executions will be stored into MemoTbl. They will use many
lines in MemoTbl, and useful entries which would be reused
later may be overwritten or flushed. It will lead to low hit rates
of computation reuse.

Therefore, we propose a new model of parallel speculative
execution for solving these two problems. It is managing mul-
tiple continuous loop iterations as one reusable region. Why
the new model can solve the problems will be described below
with an example code partly from 103.su2cor in SPEC95 CPU
suite. The code is shown in Fig. 4.

For the DO loop in Fig. 4 as a reusable region, the inputs
which should be stored in MemoTbl are the iterator I, and the
variables NDIM, LSIZE(I), MOD(LSIZE(I),2), NPTS
and LVEC. On the other hand, the outputs are the iterator

¶ ³
:
NPTS=1
LVEC=1

C
DO 10 I=1,NDIM
IF(MOD(LSIZE(I),2) .NE. 0) STOP
NVOL=NPTS
NPTS=NPTS*LSIZE(I)
LHALF(I)=LSIZE(I)/2
LVEC=LVEC*LHALF(I)

10 CONTINUE
:µ ´
Fig. 4. A part of 103.su2cor program code.

I, and the variables NVOL, NPTS, LHALF(I) and LVEC.
The traditional auto-memoization processor tests whether one
register input (the iterator I) and the five memory variables
match to one of the past input sets or not. Then, if the
computation reuse succeeds, the iterator I and four memory
variables will be written back to the registers and the caches.

Now, assume that every two continuous iterations of
the DO loop are taken as one reusable computation re-
gion. This leads to a similar effect of merging two itera-
tions into one iteration by loop unwinding. After unwind-
ing, one iteration has eight inputs which are the iterator
I, NDIM, LSIZE(I), MOD(LSIZE(I),2), NPTS, LVEC,
LSIZE(I+1) and MOD(LSIZE(I+1),2). Only two more
variables should be added than before. Likewise, one iteration
has now six outputs which are I, NVOL, NPTS, LHALF(I),
LHALF(I+1) and LVEC. Hence, only one more output
should be added.

That is, NDIM × 6 variables must have be tested in total
through the whole DO loop execution with traditional model,
where NDIM is the number of all iterations. However, when
managing two continuous iterations as one reusable computa-
tion region, the number of variables which should be searched
is NDIM ÷ 2 × 8. As a result, the total search overhead for
computation reuse will be reduced to 2/3. The total write back
overhead for computation reuse will also be reduced to 3/5.

Now, the hit rate of the stride prediction for inputs of
monotonous loops cannot be influenced by this loop unwind-
ing, although the stride value will be a multiple of original.
Hence, the overheads of computation reuse can be reduced
without degrading performance. The MemoTbl usage will be
also reduced by this loop unwinding, and the total hit rate of
reuse for all reusable computation regions will rise.

The code shown in Fig. 4 is an ideal example whose inputs
and outputs can be reduced much. However, even in the worst
case, the search overhead for at least one input, the iterator
variable, can be reduced. Hence, any loop or any program can
benefit from this mechanism.

B. Unwinding Degree and Performance

To implement the unwinding-like model mentioned above, it
is needed to install simple counters for the parallel speculative

66

Fig. 5. Execution models with three SpCs.

execution processor. Each RF line has one counter, and it
counts the number of iterations for the associated reusable
loop dynamically. In the case of managing n iterations as
one reusable computation region, when the value of a counter
reaches n, the processor registers inputs/outputs set from
MemoBuf into MemoTbl and tries to apply computation reuse
to the associated loop.

Now, it is very important how many iterations n should be
merged into one reusable computation region. Hereafter, we
call this n an unwinding degree. In the example code shown
in Fig. 4, the number of total input variables which need to be
tested through the execution of the DO loop can be calculated
as (N ÷ n)(4 + 2n) = N(2 + 4/n), where N is the total
number of iterations of the loop. Hence, it seems that the reuse
overhead will be reduced much as n goes larger. However,
there are some drawbacks in increasing the unwinding degree
n.

One of the drawbacks is that more iterations should be exe-
cuted for stride prediction of input values than the traditional
model. For example, assume a loop whose iterator variable i
is initiated with 0 and incremented by stride 1. The execution
models of this loop with three SpC are shown in Fig. 5.
The parallel speculative execution system finds a backward
branch at the end of the loop at i = 0, and recognizes the
loop as a reusable computation region. After executing the
iterations of i = 1 and i = 2, the parallel speculative execution
calculates the strides for input values prediction using the past
input values of i = 1, 2. Given the strides, SpCs execute the
iterations of i = 4, 5, 6 using the input values predicted with
the strides. When the input prediction is correct, the main core
can omit the execution of the iteration i = 4, which is shown
in the middle of Fig. 5.

On the other hand, the execution model of merging two

continuous iterations into one reusable computation region
is shown in the right part of Fig. 5. The parallel specu-
lative execution system can only calculate the input value
strides after the main core executes the iterations of i =
{0, 1}, {2, 3}. Therefore, three SpCs execute the iterations of
i = {7, 8}, {9, 10}, {11, 12} speculatively while the main core
executes the iterations of i = {5, 6}, and the first iteration
which the main core can skip is of i = 7. The iterations of
i = 4, · · · , 6 which could be omitted with the traditional model
should be executed normally. In general, when merging n
continuous iterations into one reusable computation region, the
execution of the iterations of i = 4, · · · , 3n cannot be omitted
by computation reuse, and the number of these unfortunate
iterations grows in proportion to n.

Another drawback is that the parallel speculative execution
by SpCs would not complete before the reuse tests by the main
core in more situations than the traditional model. Merging
n iterations into one reusable region increases n-fold the
execution time of one reusable region. On the other hand,
the search/writeback overhead for reusing one region will not
amount to n times, as described with the sample code in Fig. 4.
The parallel speculative execution by a SpC sometimes delays
owing to cache misses, and so on. Hence, when the input value
predictions are correct, the main core will catch up with SpCs
earlier than in the traditional model. This may lead to low hit
rate of the computation reuse because the main core cannot
reuse the results of the parallel speculative execution by SpCs.

In conclusion, defining the unwinding degree n for a loop as
large a number as possible is not good, and it is very important
to find an appropriate value for n. Since the appropriate value
for unwinding degree n depends on the amount of processing
and the number of input variables of its associated loop, an n
for a loop should differ from one for another loop.

V. IMPLEMENTATION

In this section, an implementation for the new parallel
speculative execution model shown above will be described.

A. Execution Model

As mentioned in IV-B, how many iterations should be
merged into one reusable computation region depends on the
characteristics of the associated loop, such as how many inputs
it has. Hence, we have added a new field for storing unwinding
degree to RF table. Since each entry has the field and is
associated with a loop, an appropriate value of unwinding
degree for each loop will be stored in the fields. Now, let
us see the processes of registering inputs/outputs to MemoTbl
and searching them through MemoTbl.

1) Registering to MemoTbl:
Each entry of MemoBuf now has a counter which is

initialized by zero. After detecting a loop, the processor counts
how many times it reaches the backward branch instruction at
the end of the loop, using the counter in the MemoBuf entry
which is associated with the loop. The processor keeps storing
input/output values into the MemoBuf until the value of the

67

counter comes to the unwinding degree n which is stored in
the RF entry associated with the loop.

When the counter value comes to the unwinding degree of
the loop, n iterations have been executed, and the input/output
values stored in MemoBuf are registered into MemoTbl collec-
tively as a set for one reusable computation region. Then, the
counter is reset to zero. Therefore, the processor can manage
continuous multiple iterations as one reusable computation
region with no hinting or recompiling at all.

As same as in the traditional model[6], the SpCs in this
new unwinding model get stride values from RF table, predict
input values, and execute speculatively the reusable regions.
However, the SpCs in the new model issue the parallel
speculative execution only when the associated counter to the
target loop is reset.

A backward branch instruction at the end of a loop may be
untaken before the associated counter reaches its unwinding
degree. This means that the total iteration number of the
loop is not divisible by its unwinding degree. In this case,
the input/output set currently stored in MemoBuf should be
registered into MemoTbl as one entry although the counter
does not comes to n.

2) Searching through MemoTbl:
There need no special attention about searching for com-

putation reuse in the new unwinding model. The main core
needs not to know about what is the value of the unwinding
degree of the loop which the main core is trying to apply
computation reuse. In other words, the main core needs not
to know how many iterations of the target loop have been
managed as one reusable computation region on the MemoTbl.
The main core only needs to test the all input values stored
in each line of MemoTbl. When the all input values on a
MemoTbl line match with current input values, it guarantees
that the associated computation region can be reused regardless
of how many iterations have been merged into the region.

The output values will be written back to the registers and
the caches when a computation reuse succeeds. However, the
processor need not to know the unwinding degree n as well.
One of the outputs should be the iterator variable, and its value
ought to be n larger than the current iterator value. Hence, the
execution of n iterations will surely be skipped by only writing
back the iterator value in the MemoTbl entry.

B. Dynamic Decision Algorithm for Unwinding Degrees

In general, the appropriate values for unwinding degrees
should be different between reusable loops. However, it is
almost impossible to decide the appropriate values statically.
Hence, a dynamic algorithm for deciding the unwinding degree
for each reusable loop is required.

As mentioned in IV-B, increasing an unwinding degree n
for a loop has both some advantages and some drawbacks.
The major advantages are

• Total number of input values for a loop and the reuse
overhead per iteration will be reduced.

• MemoTbl entries will be efficiently used and it will lead
to higher hit rate of reuse.

and the major drawbacks are

• The number of iterations which should be executed for
stride prediction of input values will increase.

• The execution time of SpC will increase and it will lead
to lower hit rate of reuse.

Therefore, the processor needs to find an appropriate value
of the unwinding degree for each loop considering these
advantages and drawbacks.

Now, each line of RF table stores the execution cycles, the
reuse overhead, and the recent hit/miss history of its associated
computation region, as described in III-C. Hence, these data
can be used for deciding appropriate values for unwinding
degrees. The processor computes the effect of computation
reuse, and keeps track of the effect as changes the unwinding
degree, and selects the appropriate degree which produces
good result.

A concrete method is as follows. First, each entry of RF
keeps the unwinding degree n of the associated loop. The
degree should be represented by 2k considering the hardware
cost for implementation. When a program starts running,
each unwinding degree n is initialized by 1 (k = 0), and
every iteration of all loops will be managed as one reusable
computation region as in the traditional model.

Once, a loop iteration is executed and computation reuse is
applied, its reduced cycles S by the reuse, the overhead OvhR

of the reuse test, the overhead OvhW of the writeback, and
its hit/miss history will be stored in RF. Then, the overhead
filter described in III-C calculates the Gain which is defined
by (3).

Now in the new unwinding model, the processor calu-
culates the normalized Gain per iteration, which is called
UnitGain. UnitGain can be calculated as follows

UnitGaink = Gaink/2k (4)

where UnitGaink and Gaink denote UnitGain and Gain
with unwinding degree 2k respectively, and UnitGain0 =
Gain0. As UnitGaink can be calculated by simple k-bit
arithmetic right shift, only a very small additional hardware
should be required for this calculation.

Then, the processor tries to increase the unwinding degree.
The unwinding degree n changes to 2 (k = 1), and two
iterations will be managed as one reusable region after this.
After trying computation reuse T times, which is described in
III-C, UnitGain1 will be calculated by (3) and (4). Now, if
UnitGain1 is larger than UnitGain0, increasing the unwind-
ing degree from n = 1(k = 0) to n = 2(k = 1) must bring
good result, and 2 is assumed as more appropriate value for
the unwinding degree.

The processor keeps incrementing the value of k and
comparing UnitGaink−1 and UnitGaink, until the in-
equality UnitGaink−1 > UnitGaink comes true. When
UnitGaink−1 > UnitGaink comes true, the appropiate
unwinding degree is decided as 2k−1, and k will be never
incremented again.

68

VI. PERFORMANCE EVALUATION

A. Simulation Environments

We have developed a single-issue SPARC-V8 processor
simulator with auto-memoization structures and SpCs based
on the new unwinding parallel speculative execution model.
This section discusses the performance of this processor. The
simulation parameters are shown in TABLE I. The cache
structure and the instruction latencies are based on SPARC64
proccessors[16]. The on-chip CAM for RB in MemoTbl is
modeled on MOSAID DC18288[17]. The latencies of the
CAM are defined on the assumption that the clock of the
processor is 10-times faster than the CAM. The T parameter
described in III-C is set to 64.

B. Results with SPEC CPU95 FP

We evaluated the new unwinding parallel speculative execu-
tion model. Workloads are all benchmark programs in SPEC
CPU95 FP suites and are executed with ‘train’ dataset. All
benchmark programs are compiled by gcc version 3.0.2 with
-msupersparc -O2 options.

The evaluation results are shown in TABLE II and Fig. 6.
We have evaluated following five models,
(N) No-memoization model
(P) Traditional model of parallel speculative execution

(P2) Reference model with the fixed unwinding degree: 2
(P4) Reference model with the fixed unwinding degree: 4
(D) Dynamic unwinding model (proposed in this paper)
and Fig. 6 shows the normalized execution cycles of these
models. Each bar is normalized to the number of executed
cycles of (N) the model without memoizaiton. (P) refers the
traditional parallel speculative execution model, and (D) the
new unwinding model which is proposed in this paper. (P2)
and (P4) are reference model which have fixed unwinding
degrees 2 or 4. Every model has one main core and three
SpCs.

The legend in Fig. 6 shows the breakdown items of total
cycles. They represent the executed instuction cycles (‘exec’),
the comparison overhead between CAM and the registers
(‘test(r)’), the comparison overhead between CAM and the
caches (‘test(m)’), the writeback overhead (‘write’), the D1
and shared D2 cache miss penalty (‘D$1’, ‘D$2’), and the
register window miss penalty (‘window’) respectively.

As we can see from the result of (P) (n = 1, k = 0),
(P2) (n = 2, k = 1) and (P4) (n = 4, k = 2) in Fig. 6,
the appropriate unwinding degrees should vary from program
to program. While (P4) is the best model for 103.su2cor
and 141.apsi, (P2) is the best for 110.applu, and (P) is
the best for 107.mgrid. Now, notice that the performance of
107.mgrid is extremely poor with (P4) model. This shows that
recklessly increasing the unwinding degree may lead to serious
performance deterioration.

Meanwhile, (D) the new dynamic unwinding model is
rewarded with good results. For 102.swim, 107.mgrid and
145.fppp, (D) shows as good result as the best model among
(P), (P2) and (P4). For 101.tomcatv, 104.hydro2d, 125.turb3d

TABLE I
SIMULATION PARAMETERS

MemoBuf 64 kBytes
MemoTbl CAM 128 kBytes
Comparison (register and CAM) 9 cycles/32Bytes
Comparison (Cache and CAM) 10 cycles/32Bytes
Write back (MemoTbl to Reg./Cache) 1 cycle/32Bytes
D1 cache 32 KBytes

line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

TABLE II
REDUCED EXECUTION CYCLES (SPEC CPU95 FP).

Mean Max
(P) traditional model 15.0% 40.5% (107.mgrid)
(P2) ref: fixed degree 2 19.3% 41.5% (101.tomcatv)
(P4) ref: fixed degree 4 15.9% 42.7% (102.swim)
(D) dynamic unwinding model 26.0% 57.6% (101.tomcatv)

and 146.wave5, (D) shows the best result among the all five
models. This shows that it is very important to define the
unwinding degree for each program and loop, and to change
the degree dynamically.

Looking at the breakdowns, it is found that the dynamic
unwinding model (D) can reduce ‘exec’ cycles drastically
for 101.tomcatv, 102.swim, 103.su2cor and 146.wave5 in
comparison with the traditional model (P). This should be
the fruit of the increase of the reuse hit rate by efficient use
of MemoTbl. Note that (D) also reduces reuse test overheads
‘test(r)’ and ‘test(m)’ on some programs without increasing
‘exec’ cycles. This shows that the reuse overheads can be
reduced effectively by merging continuous multiple iterations
into one reusable computation region.

Every after changing the unwinding degree dynamically, the
dynamic unwinding model (D) should execute or reuse the as-
sociated computation region at least T times. If the new degree
is inappropriate, the execution hinders its performance from
progress. Two benchmark programs 107.mgrid and 110.applu
are influenced by this problem, and their performances on the
model (D) are slightly lower than on the traditional model (P).
However, the perfoamence of the model (D) is better than the
traditional model (P) as a whole. The model (D) improves
the maximum speedup from 40.5% to 57.6%, and the average
from 15.0% to 26.0%.

VII. CONCLUSIONS

In this paper, we have proposed a new parallel speculative
execution model which can manage continuous multiple iter-
ations as one reusable computation region without hinting or
recompilation at all. An mechanism for deciding the appropri-
ate unwinding degree for each loop and changing the degrees

69

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 6. Ratio of cycles (SPEC CPU95 FP).

dynamically has also been proposed.
Through an evaluation with SPEC CPU95 FP suite bench-

mark programs, it is found that the proposal model brings the
reduction of computation reuse overhead and the high hit rate
of computation reuse. The new model improves the maximum
speedup ratio from 40.5% to 57.6%, and the average speedup
ratio from 15.0% to 26.0%.

One of the our future works are to investigate the effect
of the new dynamic unwinding model, such as the coverage
of this model, the reuse hit rate of other functions/loops, and
so on. Merging this model with other low-overhead models
such as [5] we had proposed, or reducing the shared D2 cache
misses by an improvement of prefetching effect of SpCs are
also left for future works.

In this paper, we have implemented this dynamic unwind-
ing model on a simple single-issue processor architecture.
Implementing this model on more recent architecture such
as superscaler, and trying to merge ILP-based methods and
memoization are also our future works.

ACKNOWLEDGMENT

This research was partially supported by the Kayamori
Foundation of Informational Science Advancement.

REFERENCES

[1] ARM Ltd, The ARM Cortex-A9 Processors, Sep 2007.
[2] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura,

R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Saha, D. Sheahan,
L. Spracklen, and A. Wynn, “UltraSPARC T2: A Highly-Threaded,
Power-Efficient, SPARC SOC,” A-SSCC 2007, Tech. Rep., 2007.

[3] Tilera Corporation, Product Brief: TILE64 Processor, 2007.

[4] Tilera Corporation, TILE-Gx Processor Family Product Brief, 2009.
[5] Y. Kamiya, T. Tsumura, H. Matsuo, and Y. Nakashima, “A Speculative

Technique for Auto-Memoization Processor with Multithreading,” in
Proc. 10th Int’l. Conf. on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT’09), Dec. 2009, pp. 160–166.

[6] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and
Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[7] M. H. Lipasti and J. P. Shen, “Exceeding the dataflow limit via value
prediction,” in 29th MICRO, Dec. 1996, pp. 226–237.

[8] K. Wang and M. Franklin, “Highly accurate data value prediction using
hybrid predictors,” in 30th MICRO, Dec. 1997, pp. 281–290.

[9] A. Roth and G. S. Sohi, “Register integration: A simple and efficient
implementation of squash reuse,” in 33rd MICRO, Dec. 2000.

[10] Y. Wu, D. Chen, and J. Fang, “Better exploration of region-level value
locality with integrated computation reuse and value prediction,” in 28th
ISCA, 2001, pp. 98–108.

[11] C. Molina, A. González, and J. Tubella, “Trace-level speculative multi-
threaded architecture,” in ICCD, 2002.

[12] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan
Kaufmann, 1992.

[13] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mulder, S. S.
Pawlowski, and J. R. Rattner, “Platform 2015: Intel processor and
platform evolution for the next decade,” Intel Corp., White Paper, 2005.

[14] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J. P. Shen, “Spec-
ulative precomputation on chip multiprocessors,” in Proc. of the 6th
Workshop on Multithreaded Execution, Architecture, and Compilation
(METAC-6), 2002.

[15] I. Ganusov and M. Burtscher, “Future execution: A hardware prefetching
technique for chip multiprocessors,” in Proc. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT’05), 2005, pp. 350–
360.

[16] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[17] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC

DC18288, 1st ed., Feb. 2003.

70

