
A Distributed Image Processing Environment VIOS III

and it's Performance Evaluation

Hiroshi Matsuo, Kosaku Nakada and Akira Iwata

Nagoya Institute of Technology, Dept. of Electrical and Computer Eng.

Gokiso, Showa, Nagoya 466-8555, JAPAN

matsuo@elcom.nitech.ac.jp

Abstract

We proposed a distributed image processing enviro-

ment VIOS. In this paper, the third version, VIOS

III is proposed. In VIOS III, a new parallel process-

ing language VPE-p which has exible syntax for de-

scribing parallel algorithms has been developed. And

the new programmable bu�er for accessing global vari-

able through local area network is also proposed. The

description ability for parallel image processing algo-

rithms and processing performance using workstation

clusters and multi processor system are investigated by

several image processing and recognition algorithms.

1. Introduction

There are a lot of high-end computers available to-

day. However, even using those computes, image pro-

cessing and image recognition algorithms still demand

enormous computing time. Now a days, it is easy to get

many workstations in one research group. For this rea-

son, we proposed a distributed image processing envi-

ronment VIOS for parallel image processing. This soft-

ware environment uses many workstations connected

by local area network or local bus at the same time.

On the other hand, multi CPU system and worksta-

tion cluster system have become commonplace. While

using these systems, knowledges concerning the sys-

tem programming likes network programming and in-

ter process communication program (IPC) are needed.

Then PVM[2] and MPI[3] are proposed as a library to

construct the network cluster environment. Network

and IPC knowledge are still needed because of these

libraries are implemented using low-level routine.

The image processing environment such as XITE[5]

and Khoros[4] are developed, but these program-

ming environment can't describe parallel programming

which considers data parallel of image processing algo-

rithms.

VIOS[1] is a general-purpose distributed and parallel

image processing environment which has the parallel

image processing language named VPE-p that can be

described parallel programming easily. But the ability

for the parallel description of VPE-p which developed

with VIOS II[1] is low because the parallel processing

unit is only based upon pixel, row (column) and block.

In this paper, we proposed new distributed image

processing environment VIOS III. VIOS III have the

following features,

� New parallel image processing language VPE-p

which provides exible parallel processing descrip-

tion ability

� The programmable global variable bu�er by which

users can describe the method for integration of

each bu�ers which is located on each workstation.

And the description ability and the processing perfor-

mance of a new language VPE-p are evaluated by de-

scribing various image processing and recognition algo-

rithms.

2. A distributed image processing envi-

ronment VIOS

2.1. The architecture of VIOS

The VIOS system is composed of three kind of pro-

cesses named IPU, OM and VPE. These process run

on di�erent workstations (or di�erent CPU on multi

processor machine) and are connected by local area

network (or local bus). VPE(Visual Programming Ed-

itor) is a user interface process for VIOS. VPE has

a programming language for image processing named

VPE-p. Using this language, new image processing

divide to
 working set pixel working set

Input Image Output Image

Processing

Processing

Figure 1. The parallel image processing

working set

module can be described. IPU(Image Processing Unit)

is implemented as a virtual machine, which execute in-

structions from OM. This instruction is a stack-based

language like FORTH. Many IPU can be located on a

local area network. OM (Object Manager) is the man-

agement process of image data, IPU and scheduling of

module execution.

We proposed the new type of image division data

structure for distributed and parallel processing called

the \parallel image processing working set" which is

shown at Figure.1 (hereafter called it working set). The

working set has three data as follows (1) dependence of

the data for data parallel execution (2) A pixel or pixel

set named the main pixel which can read and write

from the data parallel execution sequence (3) \The sur-

rounding pixels" that are only referred from image pro-

cessing modules.

A new image processing algorithm is described by

VPE-p, which has C like syntax. A type of parallel

execution is described using the type of working set.

Four type of the working set is implemented as follows.

Pixel parallel: Each output pixel value can be calcu-

lated independently from other output pixel value.

(Ex. Image subtraction, Laplacian �lter etc.)

Row (column) parallel: Each output row or column

value can be calculated independently from other

output row or column value. (Ex. Matrix multi-

plies, one dimensional Fourier transformation etc.)

Block parallel: Each output block value can be cal-

culated independently from other output block

value. (Ex. Image compression etc.)

Non parallel: Parallel execution is impossible.

2.2. Extension in VIOS III

Easy description of parallel image processing be-

comes possible by using the working set data structure

when the image processing algorithm has data parallel

feature clearly such as Laplacian �lter. However some

operations (for instance the procedure to �nd maxi-

mum value) which seemed to be parallelized easily can

not be described in parallel using VPE-p on VIOS II.

Because the description which uses the result of dis-

tributed data from each working set is impossible in

VPE-p.

To enable more exible parallel image processing al-

gorithm described, VIOS III and its description lan-

guage VPE-p add the following extensions

The serial part is introducebd in the module:

To describe serial part in module, the module is

divided into two part, one is parallel processing de-

scription part where the algorithms apply to each

working set is described. The other is serial pro-

cessing description part where the algorithms can

not be described parallel. Combining this exten-

sion with the working set, parallel description abil-

ity greatly improved

Network transparent global value and pixel data

: Network transparent global value that can be ac-

cessed through network is introduced. This vari-

able can be shared between working sets, which

is located on the di�erent workstations. Further-

more, the references of pixel value extend to sur-

rounding pixels is also enabled.

Programmable global variable bu�er: In the im-

age processing algorithms like the Hough trans-

form or the geometric hashing, strict exclusion

procedure is not needed for accessing the global

variable. Accessing to a global variable can be re-

placed with the access to the local variable, which

is integrated by using appropriate data integra-

tion rule that is executed when the execution step

of the module is �nished. Then a programmable

global variable bu�er for the distributed image-

processing environment VIOS is proposed.

3. Parallel image processing language

VPE-p

VPE-p consists of two parts, one is the module de-

scription part which describes image processing algo-

rithms, and the other is main ow description part

which describes the relation between each module.

3.1. Extension of parallel description within
image processing module

The module de�nition part is a part where an actual

image processing is described. The type of the working

Module definition part
module Max(a:input, x:output)
int a on box[32][32];
int x;
{
 int max[16][16];
 int i,j;
 parallel{
 int xx=hotx(a)/32;
 int yy=hoty(a)/32;
 int i,j;
 max[xx][yy]=a[0][0];
 for (i = 1; i < 32; i++)
 for (j = 1; j < 32; j++)
 if (max[xx][yy] < a[i][j])
 max[xx][yy] = a[i][j];
 }
 x = max[0][0];
 for (i = 0; i < 16; i++)
 for (j = 0; j < 16; j++)
 x = (x > max[i][j]) ? x:max[i][j];
} Sequential processing

 description part

Grobal valiable declaration
part

Argument declaration part

Parallel processing
descripion part

Figure 2. The example of module (maxi-

mum value detection)

set of input and output parameters are speci�ed with

the variable name and image-processing algorithm is

also speci�ed. The input image data name is speci�ed

ahead of reserved word "input", the output image data

name is speci�ed ahead of "output" and variables are

speci�ed ahead of "parameter" in the module declara-

tion part.

module module name(input image,:input, out-

put image,:output,variables,:parameter)

In the argument declaration part following the mod-

ule declaration part, the types of input and output pa-

rameter are speci�ed as follows.

data type variable name [on working set type

[cache n]]

When argument is Image type1, the working set type

is speci�ed following reserved word "on". The width

of the surrounding pixel is speci�ed following "cache"

when the surrounding pixels are needed. A module

consists of two parts, one is the parallel description

part and the other is serial description. Figure.2 shows

an example of describing the maximum value detection

module using "box" working set.

3.2. Access to the remote variable

In VIOS II, it was impossible to access variables out-

side the working set. However, this limitation became a

1The Image type was introduced as a new data structure to
the image in VIOS. This type has various information(each pixel
type of image, size of image and history of processing).

serious demerit of describing various distributed image-

processing algorithms. Then, to access the pixel data

that is outside of the surrounding pixels of the working

set transparently, VPE-p has been extended in VIOS

III. But an enormous access cost is needed to access

the pixel data outside the working set because network

latency is large and exclusion control is also needed.

On the other hand, in some image processing algo-

rithms, the accuracy of pixel value is not needed. Then

we proposed �ve policies as accessing the pixel value

outside the working set. Users can select these access

following policies explicitly, (1) The access outside the

working set is not checked (no check:default), (2) A

true value is acquired though the network (get), (3)

Substituted by pixel value in the working set (near),

(4) Interpolated using the working set (complete), (5)

The speci�ed constant is substituted (const n).

hist

IPU

hist

IPU

hist

IPU

hist

hist

hist

IPU

hist

IPU

hist

IPU

input

output

buffer buffer

buffer Buffers of each
IPU are arranged

Buffer integration
(additon)

Execution of each
modules end

Figure 3. Histogram calculation using pro-

grammable global variable bu�er

3.3. Programmable global variable bu�er

Access to a global variable becomes the bottleneck

of the system in the distributed processing environ-

ment with a large latency of the communication be-

tween each processor. However many image processing

and image recognition algorithm are executed treating

a global variable as a local variable, and each variable

can be integrated when the execution of modules ends.

In VIOS III, the bu�er of each module that described

such characteristics of the image processing, the user

module Histogram(in:input,histogram:output)

int in on box[32][32];

int histogram[];

#vios mutex histogram off add

{ parallel

{ int x,y;

for (x = 0; x < 32; x++)

for (y = 0; y < 32; y++)

histogram[in[x][y]]++;

}

}

Figure 4. The histogram calculation mod-

ule

speci�ed an integration procedure of each bu�er and

the speed-up of the access to a global variable was

achieved.

Figure 3 shows the ow of the data when the bu�er

integration process is used to calculate the histogram

of the density. Each IPU is accessed in bu�ered global

variable "hist". Each bu�er is integrated into one when

all the execution of the parallel processing description

part ends.

Maximum, Minimum and Addition are implemented

as an integrated method of the bu�er now. The control

method of the bu�er integration is described following

the exclusion control method to a global variable. The

control method of the exclusion and the method of the

bu�er integration are described following the variable

name.

4. Performance evaluation of VIOS III

4.1. Performance evaluation by multipro-
cessor system

The e�ect of the number of IPU which execute image

processing module were evaluated using Sun Microsys-

tems SS-1000 (OS is Solaris 2.5.1 and 128MB main

memories), which has 8 CPU connected to local bus.

Parallel image recognition program including Sobel �l-

ter, thinning, binarization using Otsu method, Hough

transformation is implemented using extended VPE-p

for this experiment. The program used for this exper-

iment is appended to the appendix. The input image

consists of 512x512 pixels and 8259 voting point (about

3 % of the number of all pixels) and 180x1446 pixels

voting space are used for Hough transformation.

Performance progression is shown in Table 1. As the

number of IPU increases, performance also increases.

Execution time is 1.8 times faster when running 2 IPU,

2.9 times faster when running 4 IPU and 4.0 times

faster when running 8 IPU on SS1000. A decrease at

execution speed when IPU increases is due to the start

time of modules and overhead for division and integra-

tion time of images. In addition, to compare the exe-

cution speed between the program which is described

by C language and described by IPU-p. As a result,

the e�ect of performance decrease when describing with

IPU-p is about 20 % when describing in C language.

This is because VIOS generate general parallel code if

only 1 CPU is used.

4.2. Performance evaluation by workstation
cluster

The performance evaluation on the workstation clus-

ters (OS: Solaris 2.5.1, Memory: 128MB, CPU: Pen-

timuPro 200Mhz) which connected to 100 Base TX

switched network using switching HUB (Bay networks

model 28115). Same program is programmed using

PVM 3.3 and C. The result is shown in Table 2. When

only 1 CPU is used, the e�ect of performance decrease

when describing with IPU-p is about 20 % when de-

scribing same program in C language, 5 % in PVM.

The number of CPU increased, good performance

advancement is achieved using VIOS III and VPE-p

compared with PVM and C. The reason of this result

is that parallel Hough transformation need to transfer

a lot of table data, network modules of VIOS is imple-

mented using thread which executed parallel.

4.3. Performance evaluation of
programmable global variable bu�er

E�ectiveness of the programmable global variable

bu�er was examined by using the program, which gen-

erate the density histogram from the input image show

in Figure 4. The result shows in Table 3. The his-

togram calculation time in the Table 3 indicates the

real processing time to generate the histogram actually

on each IPU and access cost indicates the access cost

to the global variable though the network. As shown

in the table, if there is no histogram integration, the

enormous access time to the histogram array though

the network are needed. On the other hand, only inte-

gration was performed after the histogram generation

ended was performed. As a result, large improvement

of processing time was obtained.

5. Conclusion

Distributed image processing environment VIOS III

which uses workstation cluster or multiprocessor ma-

chine is proposed. This system is composed of three

kinds of processes VPE, OM and IPU. It was con�rmed

Description Language

C VPE-p
Module name

Number of CPU

1 1 2 4 8

Sobel �lter 0.90 1.45(1.0) 0.87(1.7) 0.44(3.3) 0.28(5.2)

Thinning 0.29 0.54(1.0) 0.33(1.6) 0.24(2.3) 0.17(3.2)

OTSU 0.15 0.61(1.0) 0.42(1.5) 0.32(1.9) 0.27(2.3)

Hough trans. 7.93 10.99(1.0) 5.44(1.8) 3.06(3.3) 2.60(3.9)

local max detect 4.68 4.69(1.0) 2.52(1.9) 1.84(2.6) 1.03(4.6)

max detect 0.12 0.28(1.0) 0.20(1.8) 0.15(2.9) 0.11(4.0)

sum 14.07 17.57(1.0) 9.78(1.8) 6.05(2.9) 4.46(4.0)

Table 1. Performance for pattern recognition on Sparc Center 1000 (unit: sec)

Description Language
C VIOS III and VPE-P PVM and C

Module name
Number of CPU

1 1 2 4 1 2 4

Sobel 0.69 0.78(1.0) 0.47(1.7) 0.29(2.7) 0.73(1.0) 0.38(1.9) 0.20(3.7)

Thinning 0.09 0.15(1.0) 0.21(0.71) 0.29(0.52) 0.14(1.0) 0.08(1.8) 0.06(3.5)

Otsu binarization 0.06 0.42(1.0) 0.56(0.75) 0.67(0.63) 0.10(1.0) 0.06(1.7) 0.05(2.0)

Hough Trans. 6.44 6.97(1.0) 3.60(1.9) 2.10(3.3) 7.44(1.0) 6.22(1.2) 6.58(1.1)

Local Max detect. 2.05 2.86(1.0) 1.53(1.9) 0.82(3.5) 2.21(1.0) 1.42(1.6) 0.81(2.7)

Max detect 0.05 0.13(1.0) 0.15(0.87) 0.26(0.50) 0.06(1.0) 0.04(1.5) 0.03(2.0)

Sum 9.38 11.31(1.0) 6.52(1.7) 4.43(2.6) 10.68(1.0) 8.20(1.3) 7.73(1.4)

Table 2. Performance for pattern recognition on Workstation Cluster (unit:sec)

Without bu�er With bu�er

integration integration

Histogram calc. 1.98 sec 1.98 sec

Access cost 27442.62 sec 0.30 sec

Sum 27444.60(1.0) 2.28(12037.11)

Table 3. Performance comparison of ex-

plicit bu�er integration algorithm

to be able to describe various parallel image process-

ing algorithms using parallel image processing descrip-

tion language VPE-p and evaluated the performance.

Moreover, the programmable global variable bu�er was

proposed and implemented. And the e�ectiveness of

this proposed method was shown by the experiment.

This system has no special hardware, only uses work-

stations connected by local area network. It becomes

possible to use many workstation and multiprocessor

workstation e�ectively.

References

[1] H.Matsuo and A.Iwata. A distributed image pro-

cessing environment VIOS II. ACCV93:715-718

1993.

[2] A. Geist et al. Parallel Virtual Machine A Users

Guide and Tutorial for Networked Parallel Com-

puting. MIT Press 1994.

[3] C. H. Still. Portable Parallel Computing Via the

MPI1 Message-Passing Standard. Computers in

Physics, 8(5):533-538, 1994.

[4] Konstantinedes and Rasure. The Khoros Software

Development Environment for Image and Signal

Processing, IEEE Trans. on Image Processing,

3(3):243-252, March 1994.

[5] Otto Milvang, Tor Lnestad. An Object Oriented

Image Display System, Proc. of 11th ICPR, D:218-

221, Oct 1992.

