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Abstract. Distributed sensor resource allocation problem is an impor-
tant research area of multi agent systems. In this paper we propose a
model of distributed resource allocation problem for distributed sensor
networks. Several models based on constraint network and another model
based on concept of agency, are compared. Then, constraint network for-
malization which are similar to resource allocation problem of agency
model, is shown.

1 Introduction

Distributed sensor network is studied as an application domain of multi-agent
system. In this paper, we focus on a distributed observation system shown in
Figure 1(a). In the observation system, sensor nodes have its sensor and proces-
sor that are connected with message communication link. Intrusion detection,
target tracking and scheduled observation are included in tasks of the system.
The observation tasks are performed as distributed cooperative processing using
sensor node’s processors and communication link.

In the observation systems, resource allocation, which allocates sensors to
targets, is an important problem. In generally, the resource allocation problem
contains optimization problems. Therefore, consideration of applying distributed
optimization algorithm is useful to understand the problems and to design the co-
operative protocols. Distributed constraint satisfaction/optimization problems,
which is a fundamental formalism for multi-agent cooperation, have been stud-
ied [1], [2], [3], [4], [5], [6] . Formalizations which represents distributed sensor
networks as distributed constraint networks have been proposed [7],[8]．

On the other hand, a distributed cooperative observation system using agency
model has been developed [9],[10]．The agency model has been applied to prac-
tical environment consists on autonomous camera sensor nodes, which own pan-
tilt-zoom controlled cameras, computers and local area network. In this model,
total processing, including camera input and pan-tilt-zoom output, are inte-
grated as a hierarchical distributed processing.

In this paper, a DCOP formalization is applied to a cooperative sensor re-
source allocation problem. Formalizations using DCOP and agency model are
compared. Furthermore a cooperative formalization is proposed intend to inte-
grate DCOP approach into agency model.
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Fig. 1. A model of sensor network

2 Background: Modeling for sensor allocation

2.1 Sensor allocation problem

In this paper, we focused on a resource allocation problem such that observation
resources of sensor nodes are allocated to targets. For the sake of simplicity,
the sensor resource allocation problem is represented using grid model shown in
Figure 1. The grid models are used in related works [8]. In Figure 1(b), si and
tj represent a sensor node and a target respectively.

The goal of the problem is an optimal allocation of sensor resources for all
targets. The allocation have to satisfy conditions for as follows.

– Sensors have limited observation area. For example, each sensor observes
targets which is inside of neighbor grids. Other targets are invisible.

– Sensors have limited observation resources. For example, each sensor simul-
taneously observes one target in observation area.

– There are requirements of sensor resources for observation of targets. For
example, three sensors are required for a target to estimate coordinate of
the target in enough accuracy.

In Figure 1(b), an optimal solution is shown as arrows.
Sensor nodes solve the problem using distributed cooperative processing.

In this paper, two approaches for the cooperation are focused. In 2.2, 2.3 and
2.4, formalization using distributed constraint satisfaction/optimization problem
[7],[8] is shown. In 2.5 another model using concept of agency [9],[10] is shown.

2.2 DCOP

Distributed constraint optimization problem (DCOP) [1], [2], [5], [6], is a funda-
mental formalism for multi-agent cooperation. In the DCOP, multi-agent systems
are represented as variables and constraints. Definition of DCOP is as follows.

– A DCOP is defined by a set A of agents, a set X of variables, a set C of
binary constraint and a set F of binary functions.

– Agent i has its own variable xi. xi takes a value from discrete finite domain
Di. The value of xi is controlled by agent i.
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– Relation of an assignment {(xi, di), (xj , dj)} is defined by a binary constraint
ci,j .

– Cost for ci,j is defined by a binary function fi,j(di, dj) : Di × Dj → N.
– The goal is to find global optimal solution A such that it minimizes the

global cost function:
∑

fi,j∈F, {(xi,di),(xj ,dj)}⊆A fi,j(di, dj).

Agents cooperatively search the optimal solution using distributed constraint
optimization algorithms. In recent years, a number of algorithms are proposed for
DCOP[1] [2], [3], [4], [5], [6] . These algorithms are categorized into exact solution
methods and inexact solution methods. In sensor network, inexact methods will
be useful because of its scalability. However, the methods frequently obtains local
optimal solution.

2.3 STAV (Sensor Target As Variable)

In this section, a DCOP formalism, in which variables are defined for sensors and
targets, is shown. The example of sensor network shown in Figure 1 is formalized
as a STAV shown in Figure 2．

Variable xsi
tj

is defined for sensor si and target tj which is inside of obser-
vation area of sensor si. The variable xsi

tj
takes a value which represents an

allocation of sensors for target tj . For example, if target tj is inside of observa-
tion area of sensors s0, · · · , sn, The variable xsi

tj
takes a value which represents

{ϕ, {s0}, · · · , {sn}, {s0, s1}, · · · , {s0, · · · , sn}}．
Constraints which are defined for each variables are as follows.

– cS0(xsi
tj

) : A unary constraint which represents requirement of sensor resource
for target tj .

– cS1(xsi
tj

, xsi
tj′

) : A binary constraint which represents limitation of sensor re-
source. It is disallowed that a sensor si is multiply allocated to different
targets tjandtj′ .

– cS2(xsi
tj

, x
si′
tj

) : A binary constraint which represents consistency of decision
of sensors. Two sensor allocations, which are decided in si and si′ for a target
tj , must be equal.



In this example, it is disallowed that one sensor is multiply allocated to dif-
ferent targets. Therefore, the constraint cS1 is formalized as a binary constraint.
If one sensor is multiply allocated to targets, the constraint is formalized as a
n-ary constraint.

Moreover, constraint cS2 is defined for each two variables which are related
to tj . As another formalization, these constraints are integrated into a n-ary
constraint.

In the STAV, variables are distributed into sensor nodes, and agreement
of sensor nodes is explicitly formalized. However, this detailed formalization
increases number of variables and constraints.

2.4 TAV

In this section, a DCOP formalism, in which variables are defined for targets,
is shown. The example of sensor network shown in Figure 1 is formalized as a
TAV shown in Figure 3．

Variable xtj is defined for tj . The variable xtj takes a value which represents
an allocation of sensors for target tj . The domain of the variable are same as
STAV.

Constraints which are defined for each variables are as follows.

– cT0(xtj ) : A unary constraint which represents requirement of sensor resource
for target tj .

– cT1(xtj , xtj′ ) : A binary constraint which represent consistency of sensor
allocation for tj , tj′ . This represents each sensor is allocated to at most one
target.

In the TAV, agreement of sensor nodes is not considered. STAV is translated
to TAV as follows.

1. Constraints of cS0 for same target tj are integrated into a constraint cT0.
2. Constraints of cS2 for same target tj are removed.
3. Constraints of cS1 for same pair of targets (ti, tj) are integrated into a con-

straint cT1.

In the TAV, number of variables and constraints are less than one in SAV.
However, in practical problem, variables can not be processed in targets. In this
paper, we assume that available resources for computation is only contained in
sensor nodes. Therefore, solving another problem, that distributes the variables
and constraints on sensor nodes, is necessary.

2.5 Agency based cooperative model

As another approach different form DCOP formalization, distributed cooperative
observation system using agency model has been proposed [9],[10]. The agency
model has been applied to practical environment consists on autonomous camera
sensor nodes, which own pan-tilt-zoom controlled cameras, computers and local



s4s3s1

t0
x

s0

t0
x

s1

t1
x

s2

t1
xx

s4

t0
x

t0 t1
x

s5

t0
x

Fig. 4. A constraint network similar to agency model

area network. In this model, total processing, including camera input and pan-
tilt-zoom output, are integrated as a hierarchical distributed processing. The
outline of the system is as follows.

– The observation system is consist on sensor nodes which are called AVA. The
hardware of each AVA consists on pan-tilt-zoom controlled camera, computer
and local area network interface.

– When each AVA discovers targets, AVAs form a group (agency) for each
target.

– One of AVAs in a agency performs as a manager of the agency. Other AVAs
follow decision of the manager. The managers negotiate to share sensor re-
sources (AVAs) among agencies.

In this paper, our discussion is focused on sensor resource allocation of the
agency model. Important points as the sensor resource allocation problem is as
follows.

– Similarly to TAV, information is gathered for each target.
– The gathered information is allocated to a manager node.
– Other nodes which are related to same target follow its manager node’s

decision.

From these points of view, the agency model is considered as an integrated
model which partially contains STAV and TAV. A constraint based formaliza-
tion, which is similar to the agency model, is shown in Figure 4. In this formal-
ization, variables are defined same as STAV. However, for target t0, a variable
which is contained in sensor s0 is prioritized. Similarly, for target t1, a variable
which is contained in sensor s1 is prioritized. Other values of variables follow the
variable which is prioritized for the target.

In some cases, variables which, are related to same sensor node, are follow
different variables. For example, in figure 4, xs4

t0 , xs4
t1 are follow different variables.

Similarly, xs1
t0andxs1

t1 are follow different variables. In this case xs1
t1 follows itself.

The agency model has been successfully demonstrated in practical environ-
ment. On the other hand, sensor resource allocation problem and its solver is im-
plicitly contained. The solver is basically considered as hill-climb based method.

3 Cooperative model using constraint network

In TAV, it is necessary that variables are allocated to sensor nodes in processing.
On the other hand, in the agency model, this variable allocation and sensor



resource allocation using the variables are integrated. For practical model, this
integration is useful. However, representation of sensor allocation problem and
its solver is implicitly contained. Our purpose is to represent these problems
as constraint formalization. In this section, a formalization which hierarchically
integrates two problems as follows.

– Variables of STAV are prioritized for each target. The prioritization is con-
sidered as an allocation of computation resources.

– Then the most prioritized variables are used to solve for sensor resource
allocation which is based on TAV.

3.1 Allocation of computation resources

Allocation of computation resources is as follows. STAV is translated to TAV.
Then variables of TAV are allocated to sensor nodes (computation resources).
In actually, this is done by solving a leader election problem which satisfy con-
straints as follows.

– At least one STAV variable for each target must be the manager of the
target.

– At most one STAV variable for each sensor must be the manager. This con-
straint represents limitation of computation resources. We assume that only
one target is processed in one sensor node. This limitation may generalized
to handle multiple targets.

Allocation of computation resources is a basis of allocation of sensor re-
sources. Unless allocation of computation resources is not solved, allocation of
sensor resources is not solved. Therefore these constraints must be immediately
satisfied to solve problem. In this paper, we assume that the allocation of com-
putation resources is always solved.

3.2 Allocation of sensor resources

After computation resources are allocated, allocation of sensor resources is solved
as TAV using most prioritized variables. Other variables must take same value
as the corresponding most prioritized variable.

3.3 TAV+SAV (Sensor As Variable) — Gathering of decision
making

Constraint cT1 for TAV variables is related to multiple variables. Therefore,
communication between variables is necessary to evaluate the constraint. For
example, when variable xti takes a value from its domain {ϕ, {s0}, {s1}, {s0, s1}},
verifying exclusive assignment is necessary for each other variable which is related
to sensor s0 or s1.

To reduce this communication, domains of variables are modified. The mod-
ified domain consists on tuple of assignments of sensors. The assignment of each



sensor represents a target which is allocated to the sensor. For example, domain
of xti consists on tuple of assignment of s0 and s1. The assignment for s0 repre-
sents a target in {ϕ, tk, · · · , tk′} which are inside observation area of s0. Here ϕ
represents that no target is allocated. In this translation, resource constraint of
sensor is considered.

As a result of the translation, information about targets and sensors is gath-
ered into sensor nodes which own most prioritized variables. This is considered
as gathering of decision making into agency managers.

When a sensor is related to multiple most prioritized variables (agency man-
agers). Assignment for the sensor is decided by one agency manager using tie-
break. A cooperative method using the similar concept of multiple agency is
shown in [10].

3.4 Formalization

A cooperative model shown in above subsections is formalized as follows. Each
agent knows information as follows.

– Ts : A set of target which is inside observation area of sensor s.
– Ns : A set of neighbor sensors of sensor s. Information including Ts and

resource constraint of sensor s is shared with other sensors in Ns.

According to these information, each sensor generates variables and con-
straints. Variables are defined as follows.

– xT
s,t : A variables which represents manager or member of agency. xT

s,t takes
a value form its domain DT

s,t = {0, 1}. xT
s,t = 1 represents that sensor node

s is manager of agency for target t. Otherwise s is member of the agency.
– xS

s : A variable which represents allocation of sensor s for targets. XS
s takes

a value from its domain DS
s . DS

s represents a subset of tuple of Ts or nothing
to allocate. In our example problem definition, sensor s is allocated to only
one target in Ts. Therefore DS

s =Ts ∪ {ϕ}.
Each sensor node s has variables of related sensor nodes in Ns. The copy of
other neighbor node’s variables are necessary when s performs as a manager.

Constraints are defined as follows.

– cA0
s,t : A constraint which prohibits confliction of multiple agency manager

between two sensor nodes. The constraint is defined as follows. Number of
variable such that xT

s,t = 1 for all s ∈ Ns, must be 1. Only one sensor node
performs as an agency manager for a target.

– cA1
s,t : A constraint which prohibits confliction of multiple agency manager

for own targets. The constraint is defined as ¬(xT
s,t = 1 ∧ xT

s,t = 1) for all
t ̸= t′. In our example problem definition, a sensor node performs as a agency
manager for only one target.

– cA2
s,s′,t : A constraint which represents membership of agency. If xT

s′,t = 1 then
xS

s = xS
s′ must be satisfied. If xT

s′,t = 1 in multiple sensors s′ then one of
those is prioritized using tie-break of sensor identifier.



– cA3
s,t : A constraint which represents requirement of sensor resources for target

t. This constraint is relaxed using cost function if it is necessary. The cost
is evaluated using number of variables such that xS

s = t. Cost value of
constraints is defined as follows.

fA3
s,t (n + 1) ≪ fA3

s,t (n),
where n denotes number of variables such that xS

s = t. (1)

Additionally, we also use tie-break using priority of variables identifier to
avoid confliction of decisions between nodes.

3.5 Problem solving

In 3.4, a cooperative model, which is similar to agency model, is formalized as
DCOP. However, solving this problem ignoring hierarchy structure contained
in that, is obviously inefficient. Therefore search processing is pruned using the
hierarchy.
Priority of constraints

A priority relation between constraints is defined from hierarchy structure of
problem. The priority relation is shown as follows: cA0 ≻ cA1 ≻ cA2 ≻ cA3．Here
c ≻ c′ denotes that constraint c is prior to c′．Constraints are satisfied according
to the priority.

cA0 and cA1 are the constraints for leader (manager) election problem. These
constraints are related to set of variables xT

s,t. Therefore, in first step of search
processing, partial solution for the set of variables. Then other constraints related
to xS

s are satisfied. This prioritization is done using a variable ordering such that
xT

s,t is prior to xS
s,t.

Gathering decision
In member (non-manager) sensor node, search processing to satisfy cA2 and

cA3 is redundant. Therefore, the member nodes only receive the assignment of
variables. Search processing of the assignment is not performed in the member
nodes.

4 Experiment

As first experiment, proposed model is applied to a grid sensor network problem.
The problem is generated using parameters w, h, c. w and h determines width
and height of grids. c determines a degree of constraint network. Each target
is added to grids such that, number of targets inside 8 neighbor of the grid, is
more than 1 and less than c. The cost of cA3 is set to {0, 1, 10, 100, 1000} for
number {4, 3, 2, 1, 0} of allocated sensor nodes respectively. In the experiment
basic hill-climb based method using variable ordering is applied. The outline of
the processing is as follows. Each node sends its assignments to neighbor nodes.
Messages are exchanged by simulator. In this experiment, processing of nodes is
synchronized to global message cycles. When each node receives neighbor node’s
assignment, the node modifies its assignment. These processing is iteratively
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Fig. 5. An example of execution

Table 1. Error rates to optimal cost

w, h c num. of error
targets

3 3 7.6 2.74
3 4 8.5 0.94
5 1 11.7 1.63
5 2 15.5 2.57

10 1 43.1 1.42

repeated until assignment is converged. An example of execution is shown in
Figure 5. In fast step of the execution, constraints cA0 and cA1 are solved. Then,
sensor allocation, represented as cA2 and cA3, are solved. In these problems,
assignments are converged within 5 iterations. However, most assignments are
converged into local optima. Error rates to optimal cost are shown in Table 1. It
is considered that the sensor allocation problem is rather complicated problem.
Therefore applying DCOP algorithms is necessary to improve solution.

5 Conclusion

In this paper, DCOP formalization is applied to a cooperative sensor resource al-
location problem. Formalizations using DCOP and agency model are compared.
And a cooperative formalization is proposed intend to integrate DCOP approach
into agency model.

Integration of distributed algorithms including construction of constraint net-
work, applying other solver for DCOPs and extension for practical observation
problems will be included in our future work.
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