
A Speculative Technique for Auto-Memoization
Processor with Multithreading

Yushi KAMIYA∗, Tomoaki TSUMURA∗, Hiroshi MATSUO∗ and Yasuhiko NAKASHIMA†

∗Nagoya Institute of Technology
Gokiso, Showa, Nagoya, Japan

Email: camp@matlab.nitech.ac.jp

†Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, Japan

Email: nakashim@is.naist.jp

Abstract—We have proposed an auto-memoization processor.
This processor automatically and dynamically memoizes both
functions and loop iterations, and skips their execution by reusing
their results. On the other hand, multi/many-core processors have
come into wide use. The number of cores is expected to increase
to a hundred or more. However, many programs do not have so
much parallelism in them. Therefore it becomes very important
to consider how to utilize many cores effectively. This paper
describes a speedup technique for auto-memoization processor
using speculative multi-threading. Two speculative threads will
be forked on reuse test. The one assumes that the reuse test
will succeed, and executes the following codes of the reuse target
block speculatively. The other assumes that the reuse test will
fail, and executes the reuse target block. These two threads
conceal the overhead of auto-memoization processor. The result
of the experiment with SPEC CPU95 suite benchmarks shows
that proposing method improves the maximum speedup from
13.9% to 36.0%.

Index Terms—memoization, multicore, multithread

I. INTRODUCTION

As electric power consumption and calorific power are
increasing, and semiconductors are going smaller, it becomes
difficult to raise clock rates of microprocessors. Now, micro-
processors are facing to the crossroads of speedup techniques.

So far, the latency of microprocessors have been controlled
by the gate latencies. Hence, transistor scaling provided higher
clock for microprocessors, and it made microprocessors faster.
But now, the interconnect delay is going major and the
main memory and other storage units are going relatively
slower. In near future, high clock rate cannot achieve good
microprocessor performance by itself.

Speedup techniques based on ILP (Instruction-Level Par-
allelism), such as superscalar or SIMD, have been counted
on. However, the effect of these techniques has proved to be
limited. One reason is that many programs have little distinct
parallelism, and it is pretty difficult for compilers to come
across latent parallelism. Another reason is the limitations
caused by other processor resources, for example, memory
throughput. Even if the compilers can extract parallelism,
the memory throughput restricts the issue width. Therefore,

microprocessors are under the pressure of necessity of novel
speedup techniques.

In response to this distress, multi-core processors attract
a great deal of attention. They are now in wide use from
generic processors for PCs to embedded processors[1]. Many-
core processors such as UltraSPARC T2[2] and TILE64[3]
also are available now.

Several speedup techniques for multi-core processors have
been proposed. For example, some compilers have the function
of auto-parallelization. But it is difficult to find thread level
parallelism (TLP) in programs, and parallel programming is
also difficult. Consequently, some cores may be idle on many-
core processors because of the lack of parallelism. Hence, it
becomes much important to utilize all cores on the processor.

Meanwhile, in the software field, memoization[4] is a
widely used programming technique for speedup. It is storing
the results of functions for later reuse, and avoids recomputing
them. As a speedup technique, memoization has no relation
to parallelism of programs. It depends upon value locality,
especially input values of functions. Therefore, memoization
has a potential for breaking through the stone wall the speedup
techniques based on ILP have run into.

Memoization brings a good result on expensive functions,
but it requires rewrite of target programs. The traditional
load-modules or binaries cannot benefit from memoization.
Furthermore, the effectiveness of memoization is influenced
much by programmers. Rewriting programs using memoiza-
tion occasionally makes the programs slower. Memoization
costs a certain overhead because it is implemented by software.

We propose an auto-memoization processor which makes
traditional load-modules faster without any software assist.
There is no need to rewrite or recompile target programs. Our
processor detects functions and loop iterations dynamically,
and memoize them automatically. However, memoization has
some overhead for input matching and output write-backing.
Our previous research showed that the overhead cancels the
speedup with memoization on some programs[5].

This paper shows a technique of how to reduce these
overheads by using multi-threading. Supposing to design an

2009 International Conference on Parallel and Distributed Computing, Applications and Technologies

978-0-7695-3914-0/09 $26.00 © 2009 IEEE

DOI 10.1109/PDCAT.2009.67

160

Fig. 1. Memoizable Instruction Regions

Fig. 2. Structure of Auto-Memoization Processor

auto-memoization processor based on multi-core processor,
surplus cores are utilized effectively and are able to contribute
to speedup with this technique.

II. AUTO-MEMOIZATION PROCESSOR

A. Outline and Structure

Our auto-memoization processor memoizes functions and
loops dynamically and automatically. Fig. 1 shows the mem-
oizable instruction regions. A region between the instruction
with a callee label and return instruction is detected as a
memoizable function. A region between a backward branch
instruction and its branch target is detected as a memoizable
loop iteration. This processor detects these memoizable re-
gions automatically and memoizes them.

Fig. 2 shows the structure of auto-memoization processor.
Memoization system consists of memoization engine and
memo table ‘MemoTbl.’ Processor core has also ‘Memo-
Buf’ a small writing buffer for MemoTbl. Entering to the
memoizable region, the processor refers to the MemoTbl and
compares current inputs with former inputs which are stored
in MemoTbl.

If the current input set matches with one of the stored input
sets on the MemoTbl, the memoization engine write backs the
stored outputs to cache and registers. This omits the execution
of the region and reduce whole execution time.

If the current input set does not match with any past input
sets, processor stores the inputs and the outputs of the region
into MemoBuf while executing the region as usual. At the end
of the region, the memoization engine stores the contents of
MemoBuf into MemoTbl for future reuse.

Fig. 3. An example of nested functions

MemoBuf: Through the execution of an instruction re-
gion, the processor stores the addresses and the values of
inputs/outputs to MemoBuf. Note that the memoizable regions
in programs are usually nested. Fig. 3 shows a simple example.
A function B is called in another function A, and B uses global
variables g, h as its inputs. When B is directly called, g and h
are inputs only for B. When A is called, these variables g, h are
inputs not only for B but also A. That is, the processor should
memorize inputs/outputs of nested regions simultaneously. We
make the depth of MemoBuf six, and each MemoBuf line can
store the one of the nested instruction regions. At the end of a
region, the corresponding line is popped from MemoBuf and
copied into MemoTbl.

MemoTbl: Now, MemoTbl should keep this input tree in
it. MemoTbl consists of CAM/RAM parts. The CAM part is
for edges of the input tree, and the RAM part is for nodes of
the input tree and outputs. Considering the CAM width and
granularity, we define the length of edge value as 16 bytes. An
edge of input tree is corresponds to a CAM line. Fig. 4 shows
the input tree and the brief structure of MemoTbl. MemoTbl
consists of following tables as shown in Fig. 4.

RF: stores the start address of instruction set.
RB: stores the input data set of instruction set.
RA: stores the input address set of instruction set.
W1: stores the output data set of instruction set.
The RF, RA, and W1 are constructed as RAM. On the other

hand, the RB is constructed as a CAM (Content Addressable
Memory) array, so that input matching can be implemented
by fast associative search. Generally, the sequence of input
addresses of a reusable block varies depending on their input
values. This comes from the variable which holds a memory
address or a condition value for a branch. Hence, the all
variations of input sequences for a certain instruction block
can be represented as a tree structure, and one of the sequences
can be represented as a pass from the root to a leaf as shown
in Fig.4.

When our auto-memoization processor runs a program and
detects a call instruction or a backward branch instruction, it
compares current input values with former input values which
are stored in the MemoTbl. We call this ‘input matching.’

161

Fig. 4. Structure of MemoTbl

B. Input Matching

Now, we explain the behavior of MemoTbl and input
matching using Fig.4.

When the auto-memoization processor detects a function or
a loop iteration, it first searches the block address through the
RF table for deciding the inputs of the reusable block is stored
or not. Next, input matching starts. This process is shown as
(1)...(8) in Fig.4. First, the memoization engine reads the value
of program counter (PC) and registers. Suppose the value was
‘----1000’. The CAM entry stores whole cache line which
includes the input. Hence, the non-input bits should be masked.
They are implemented by don’t care bits on ternary CAM. The
index 00 line of CAM is found (1). Each RB line has next
input address in the same line of RA. In Fig.4, the next address
is decided as addr1 (2). The processor reads addr1, gets the
next input values, and search them through RB again (3). This
process is applied repeatedly (5)...(8) until all input values are
confirmed. If all inputs of a reusable block have matched with
one of the stored input set on the MemoTbl, our processor can
get the output set from W1 by using the index for W1 (called
‘W1 pointer’) stored in terminal RA entry.

Meanwhile, accessing MemoTbl causes overhead inevitably.
Through input matching, searching RB, referring RA, and
reading caches cost a certain time. When input matching has
succeeded, outputs of the reusable block should be written
back from W1. This also costs some time. We call these two
kind of overheads ‘Reuse Overheads.’

For some reusable blocks, reuse overhead overcomes the
eliminated execution cycles by reuse. This goes for some
blocks which have many input values to be tested, and all
tiny blocks. Hence, the auto-memoization processor estimates
the effect of reuse, and avoids memoing/testing unsuitable
instruction regions. This can reduce useless input matching

Fig. 5. Auto-Memoization Processor with SpMT cores

and contributes to good performance.

C. Parallel Speculative Execution

As a matter of course, memoization can omit the execution
of a instruction region only if the current input values for the
region match completely with the input values which are used
in former execution. Hence, for example, a loop which uses its
iterator variable as its input never benefit from memoization.

Meanwhile, many of microprocessor companies are switch-
ing to multi-core designs today. There is a story going around
that processors with hundreds of cores may be delivered in
another decade[6]. But how we can use these many-core pro-
cessors effectively is still under review between researchers.

Speculative multi-threading (SpMT) is an answer to this
question, but it is not so easy to deal with crossthread depen-
dence violation and thread squash. We append some SpMT
cores to our auto-memoization processor. These cores help the
unsuitable regions for memoization mentioned above. Fig.5
shows the new structure of the auto-memoization processor
with SpMT cores.

Each core has its own MemoBuf and first level data cache.
The second level data cache and MemoTbl is shared between
all cores. While the main core executes an memoizable in-
struction region, SpMT cores execute the same region using
predicted inputs. The inputs are predicted from the last value
being managed by the main core and strides of the values. For
example, when the main core detects function calls f(1,1)
and f(1,2), the coming inputs of f() are predicted as
(1,3), (1,4), and so on using the input stride. Then, SpMT
cores executes f(1,3), f(1,4) in advance. With three
SpMT cores, the instruction region is executed using three
predicted input sets concurrently with the main core. SpMT
cores store the results into MemoTbl. If the input prediction
was correct, the main core finds the next result in MemoTbl.
Unlike as ordinary speculative execution, even if the input
speculation proves to be incorrect later, the main core need
not to pay a cost for any backout processes. This extension
can omit the execution of instruction regions whose inputs
show monotonous increase/decrease.

These SpMT cores not only omit some execution, but also
works as a cache prefetch technique[7], [8].

162

III. REDUCTION OF REUSE OVERHEAD

A. Proposal
In this section, we pay attention to reuse overhead. Reuse

overhead can be divided into two classes. One is the overhead
which costs when input matching succeeds. The other is
the overhead which costs when input matching failed. We
improve an auto-memoization processor for concealing these
two overheads. Now the processor can run additional two
threads. The one assumes that the reuse test will succeed,
and executes the following codes of the reuse target block
speculatively. The other assumes that the reuse test will fail,
and executes the reuse target block normally. We will explain
these threads in detail.

Main thread (Memoization thread): This thread is the
main thread of the auto-memoization processor. This thread
executes instructions sequentially, memoizes functions and
loops, and tries input matching.

Preceding thread: This thread conceals the overhead in the
case of that input matching succeeds. This thread supposes
that input matching will succeeds. That is to say, outputs of
the testing block are written back before input matching is
finished, and preceding thread executes following instructions
of the testing block speculatively. Preceding thread runs in
parallel with main thread and conceals the reuse overhead.

No-Memoization thread: This thread conceals the over-
head in the case of that input matching fails. If the current
input value sequence cannot be found on MemoTbl, main core
must execute the reusable block normally. In this case, whole
searching overhead is accumulated to the execution cycles.
No-memoization thread executes the reusable block without
searching inputs through MemoTbl assuming that reuse test
will be fail. This thread runs in parallel with main thread and
conceals the searching overhead.

We improve the auto-memoization processor for being able
to run these three threads simultaneously. The processor have
three cores at the lowest and the three cores take charge of
three thread mentioned above by turns. If the processor has
four or more cores, the surplus cores are used for parallel
speculative execution. These cores are called as SpMT cores.
In this paper, we assume that the processor has five cores.
Three cores out of the five are assigned to main thread,
preceding thread, and no-memoization thread respectively.
Then the other two cores are assigned to parallel speculative
execution.

B. Execution Model
Function call: Fig. 6 shows a behavior of the processor

on a function call. The processor has cores named (A), (B)
and (C). At the beginning of the program, core (A), core (B)
and core (C) is assigned to main thread, preceding thread, and
no-memoization thread respectively.

When the core (A) which is assigned to main thread detects
the call instruction of function f() at t1, (A) starts input
matching. Simultaneously, (B) and (C) copy the value of
program counter of (A). The core (C) which is assigned to no-
memoization thread skips input matching of f() and starts to

Fig. 6. Execution Model for a function region

Fig. 7. Execution model for a loop region

execute function f() normally. When (A) finds that the first
part of current inputs hits an entry on MemoTbl at t2, (B) starts
to execute following codes of f() after speculating suitable
W1 index and writing back a past output value sequence from
W1 table.

At t3, (A) verifies that current input value sequence com-
pletely coincides with a past input sequence on MemoTbl, and
(B) examines whether preceding thread on (B) can run forward
or must be squashed. This can be examined by comparing the
W1 index which was picked up at t2 by preceding thread
with the W1 index which the terminal entry of RA points to.
If these W1 indices are same, the preceding thread on (B)
turns into the main thread, and the main thread on (A) will be
squashed. Hereafter, the core (A) runs preceding thread and the
core (B) runs main thread. Simultaneously the no-memoization
thread on (C) will be also squashed. These three threads runs
independently, therefore preceding thread and no-memoization
thread do not prevent main thread from accessing to MemoTbl
and main memory.

Although main thread finds that f() is reusable at t3,
preceding thread often must be squashed. This is caused by
a wrong speculation about W1 pointer at t2. In this case, the
main thread on (A) runs forward and the threads on (B) and
(C) are squashed without exchanging threads. The squashes
of two threads on (B) and (C) are not observed by (A), and
there comes into no overhead. Now, assume that the preceding
thread on (B) is proved to be correct at t3. Then, (B) starts
input matching on detecting a new call instruction against
function g() at t4. As the behaviour at t1, the no-memoization
thread on (C) executes function g() normally. When (B)
detects that input matching fails at t4, (B) and (C) exchange

163

Fig. 8. Structure of Proposed Auto-Memoization Processor

their threads. The core (B) takes no-memoization thread and
the core (C) takes main thread after t4. In this case, the no-
memoization thread on (C) conceals the overhead of input
matching by the main thread on (B).

This model allows preceding thread and no memoization
thread neither to call another function nor to return to the
callee. Therefore, we can avoid an explosive increase of
MemoBuf size.

On loop iteration: Fig. 7 shows a behavior of the processor
on executing a loop iteration. The processor has cores named
(D) and (E), and they are assigned to SpMT threads statically.
When the processor detects a loop iteration, (D) and (E) start
value prediction and parallel speculative execution.

In the case of a loop iteration, no preceding thread and no-
memoization thread are generated, and two cores for them are
suspended. On the other hand, the SpMT threads are assigned
statically to cores, and they work not only on function calls
but also loop iterations.

An example of a loop is shown in Fig. 7. The SpMT threads
on (D) and (E) speculate input sequences of the loop by stride
value prediction. The SpMT threads execute the loop iteration
using a speculated input sequence independently.

IV. IMPLEMENTATION

A. Architecture

We have improved an auto-memoization processor to imple-
ment the model explained in previous section. Fig. 8 shows
the improved auto-memoization processor.

Thread exchange between cores occurs on our model when
the preceding thread succeeds its speculation or when the main

thread finds that input matching fails. Therefore, three cores
have a bus for coping the value of program counter and register
data set between the cores. Each core has completely same
structure and shares second level data cache, MemoBuf and
MemoTbl. The ALU output bus on each core connects not
only the register file on the core and its first level data cache
but also the register files on the other cores. Hence, the output
value on a core can be also written to the other cores.

These three cores are illustrated at the middle of the Fig. 8.
Each of the three cores takes one of the three threads,
main thread, preceding thread and no-memoization thread
respectively, and exchanges their roles dynamically. So, it
is necessary to make sure of the coherence of registers and
caches. The three cores communicate register values each
other, and get the required PC/register values from the main
core. This copying overhead may be expensive, if the cores
copy register values from the main core whenever new threads
are generated. To reduce this copying overhead, the processor
has two additional units. The one is SpRF (Speculative
Register File) and the other is RegMask (Register Mask).
The SpRFs have a similar structure to the register file. Both
preceding thread and no-memoization thread stores values on
SpRFs instead of register files.

Next, let’s see the two cores for parallel speculative exe-
cution. They are illustrated at the top of the Fig. 8. These
cores connect to MemoTbl and D$2 and have MemoBuf
locally so as to store input/output sequences. They run parallel
speculative execution independently.

B. Register/Memory Coherency

We will show a mechanism to guarantee the coherence of
register/memory values between cores. On accessing register
file, the main core refers the RegMask to see which register
values are overwritten by other cores. The latest value is stored
in register file or SpRF. If the register the main core is going
to access is masked by RegMask, the register value is dirty
and the main core should get the value from SpRF. In this
case, the main core stalls and transfer the latest value from
the SpRF on one of the other two cores.

Next, we show the memory coherence. If preceding thread
or no-memoization thread fails, output values on its Mem-
oBuf become unusable. Hence, preceding thread and no-
memoization thread writes output values not onto memory but
onto their own MemoBufs. This prevents memory values from
being violated by these threads.

C. Prediction Pointer

Preceding thread should pick up an output sequence of
current reusable block for executing the following codes after
the block. We have added a prediction pointer field to RA
table in MemoTbl. Halfway through input matching, multiple
W1 entries are potential output sequences. They will be
narrowed down to only one sequence at the end of input
matching, but it is unclear which sequence will be selected
finally. The prediction pointer field holds one of the candidate
among potential output sequences. Preceding thread considers

164

this prediction pointer value as the pointer to correct W1
entry, and writes back the output sequence to the registers
and MemoBuf. When storing new input/output sequence onto
MemoTbl, prediction pointer fields of all RA entries which
construct the storing input sequence are filled with the pointer
to the W1 entry on which the output sequence is going to be
stored. When input matching succeeds and one entry is picked
up from W1, the value of prediction pointer is updated with
a pointer to the entry.

V. PERFORMANCE EVALUATION

A. Simulation Parameters

We have developed a single-issue simple SPARC-V8 simu-
lator with auto-memoization structures. This section discusses
the performance of the processor. The simulation parameters
are shown in Table I. The cache structure and the instruction
latency are based on SPARC64[9].

As for memo tables, we defined the size of shared MemoBuf
as 64 KB (32 Bytes×256 lines×8 sets), the size of local Mem-
oBuf provided for speculative core as 48 KB (32 Bytes×256
lines×6 sets), and the size of MemoTbl CAM as 128 KB
(32 Bytes×4K lines). The size of MemoBuf is near to D1
cache, and the size of MemoTbl is very smaller than D2 cache.
And the size of SpRF appended in this proposal as 416 Bytes
(4 Bytes×104 registers). The on-chip CAM is modeled on
MOSAID DC18288[10]. We assume the latency for register
synchronization as 32 bit/cycle.

B. Results with SPEC CPU95

We evaluated our auto-memoization processor with multi-
threading which has three cores. Workloads are all benchmarks
in SPEC CPU95 suits and are executed with ’train’ dataset.
All benchmarks are compiled by gcc-3.0.2 with -msupersparc
-O2 options.

Fig. 9 shows the normalized execution cycles of the SPEC
CPU95 benchmark programs. Each bar is normalized to the
number of executed cycles without memoization(N). Each
benchmark is represented by five bars in this chart. The
leftmost bar (N) plots the baseline that is the execution cycles
original benchmark costs. The second bar (M) plots the cycles
using auto-memoization with no speculative cores. The middle
bar (P) plots the cycles using parallel speculative execution
with two SpMT cores in addition to a main core. This model
has three cores in total. The fourth bar (S) plots the cycles
by overhead concealing model proposed in this paper. This
model also has three cores for three threads; main thread,
preceding thread and no-memoization thread. The fifth bar
(A) plots the cycles by the hybrid processor of the parallel
speculative execution and the proposal model with five cores.
One core is for the main thread, two cores are for parallel
speculative execution, and the other two cores are for overhead
concealing threads. This hybrid model is illustrated in Fig. 8.

The legend shows the itemized statements of cycles. They
represent the executed instruction cycles (’exec’), the reuse
overhead (’reuse ovh’), the overhead of register value transfer
between cores (’regcopy’), D1 cache miss penalty (’D$1’),

TABLE I
PROCESSOR PARAMETERS

D1 cache 32 KBytes
line size 32 Bytes
ways 4 ways
latency 2 cycles
miss penalty 10 cycles

D2 cache 2 MBytes
line size 32 Bytes
ways 4 ways
latency 10 cycles
miss penalty 100 cycles

Register windows 4 sets
miss penalty 20 cycles/set

Shared MemoBuf 64 kBytes
Local MemoBuf (in SpMT cores) 48 kBytes (×2)
MemoTbl CAM 128 kBytes
Comparison (register and CAM) 9 cycles/32bytes
Comparison (Cache and CAM) 10 cycles/32bytes
Write back (MemoTbl to Register or Cache) 1 cycle/32bytes
SpRF 416 Bytes
Register copy 1 cycle/32bits

shared D2 cache miss penalty (’D$2’), and register window
miss penalty (’window’) respectively.

As shown in Fig. 9, the execution cycles of some benchmark
programs such as 125.turb3d, 146.wave5 and 147.vortex are
reduced by the auto-memoization processor (M). On the other
hand, there are several benchmark programs whose cycles
increase. This is quite noticeable with 129.compress, 130.li,
and 134.perl. These programs will tend to fail input matching
in many cases and there should be a little reusable blocks
in them. Consequently, the speedup by (M) is canceled out
by reuse overhead on average. Hence, it is very important to
reduce reuse overheads.

The parallel speculative execution (P) works very well with
CFP benchmarks. Many CFP benchmark programs have large
and heavy loop iterations which calculates such as product-
sum of matrices. This would be the reason why CFP programs
are suitable for (P). On the other hand, (P) can contribute
little toward CINT programs’ speedup. The parallel speculative
execution is a good method for utilizing idle cores indeed, but
the effect is limited to certain programs.

The multi-threading model (S) proposed in this paper
achieves a big reduction of reuse overhead. It is quite re-
markable with some CINT programs such as 129.compress,
130.li, 134.perl and 147.vortex. However, the execution cycles
of almost all the programs of CFP are not reduced as compared
with (M). The reusable functions account for rather small ratio
in CFP benchmark programs, and the function-reuse overhead
is essentially small as seen in the (M) results.

As shown above, the model (P) is effective for the programs
which have monotonous and heavy loop iterations such as CFP
benchmark programs. On the other hand, the model (S) is
effective for the programs which have many and large reusable
functions such as CINT benchmark programs.

Then, now let’s see how (A): the hybrid model of (P) and
(S) works. Each of the CFP results with (A) is equal to or
slightly better than its result with (P). On the other hand, each
of the CINT results with (A) is equal to or pretty better than
its result with (S). Consequently, the hybrid method (A) can

165

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
windowD$2D$1

reg_copyreuse_ovhexec

windowD$2D$1

reg_copyreuse_ovhexec

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2s

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

14
6.

w
av

e5

09
9.

go

12
4.

m
88

ks
im

12
6.

gc
c

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

CFP CINT

(N) w/o Memoization
(M) Memoization

(P) Memoization + SpMT
(S) Memoization + Proposal

(A) Memoization + SpMT + Proposal

(N) w/o Memoization
(M) Memoization

(P) Memoization + SpMT
(S) Memoization + Proposal

(A) Memoization + SpMT + Proposal

Fig. 9. Normalized execution time (SPEC CPU95)

TABLE II
REDUCED EXECUTION CYCLES (SPEC CPU95)

Average Maximum
(M) Memoization -0.1% 13.9% (146.wave5)
(P) Memoization + SpMT 5.6% 35.2% (107.mgrid)
(S) Memoization + Proposal 2.1% 21.7% (147.vortex)
(A) Memoization + SpMT + Proposal 9.0% 36.0% (107.mgrid)

achieve equal performance to the better one of (P) and (S).
Especially, the benefit of the hybrid model is very distinct on
124.m88ksim benchmark program which has both monotonous
loops and reusable functions. Table II summarizes these results
of all models.

VI. CONCLUSION

Generally, it is difficult to accelerate the programs which
have little parallelism in them. An auto-memoization proces-
sor is an answer to this problem, but memoization costs a
certain overhead for computation reuse. Running programs
which have little parallelism, multiple cores will be idle
on trendy multi/many-core processors. Hence, merging auto-
memoization processor and multi-threading can conceal reuse
overhead and would be able to accelerate the programs with
no parallelism.

In this paper, we have proposed an auto-memoization
processor with multi-threading which can reduce the reuse
overhead. The hybrid model of parallel speculative execution
and multi-threading for concealing reuse overhead can enjoy
mutual advantage of them.

The performance evaluation through SPEC CPU95 bench-
marks shows that many programs can gain speedup and that
the proposed model pushes up the maximum eliminated cycles
from 13.9% to 36.0% and the average eliminated cycles from
-0.1% to 9.0%.

Our future work is to change the assignment of cores to

the threads dynamically. On the current implementation, the
cores for parallel speculative execution and the three cores for
concealing overheads does not exchange their threads each
other. This makes some cores idle. For example, preceding
thread and no-memoization thread are not generated on loop
iterations, and two cores for them will be idle. We plan to
let these two cores run parallel speculative execution threads
when they are idle.

There is an another problem that the processor does not
conceal the overheads of reusing loop iterations. Hence, a
further improvement of the processor model will be required.

ACKNOWLEDGMENT

This research was partially supported by the Kayamori
Foundation of Informational Science Advancement.

REFERENCES

[1] ARM Ltd, The ARM Cortex-A9 Processors, Sep 2007.
[2] M. Shah, J. Barreh, J. Brooks, R. Golla, G. Grohoski, N. Gura,

R. Hetherington, P. Jordan, M. Luttrell, C. Olson, B. Saha, D. Sheahan,
L. Spracklen, and A. Wynn, “UltraSPARC T2: A Highly-Threaded,
Power-Efficient, SPARC SOC,” A-SSCC 2007, Tech. Rep., 2007.

[3] Tilera Corporation, Product Brief: TILE64 Processor, 2007.
[4] P. Norvig, Paradigms of Artificial Intelligence Programming. Morgan

Kaufmann, 1992.
[5] T. Tsumura, I. Suzuki, Y. Ikeuchi, H. Matsuo, H. Nakashima, and

Y. Nakashima, “Design and evaluation of an auto-memoization proces-
sor,” in Proc. Parallel and Distributed Computing and Networks, Feb.
2007, pp. 245–250.

[6] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mulder, S. S.
Pawlowski, and J. R. Rattner, “Platform 2015: Intel processor and
platform evolution for the next decade,” Intel Corp., White Paper, 2005.

[7] J. A. Brown, H. Wang1, G. Chrysos, P. H. Wang1, and J. P. Shen, “Spec-
ulative precomputation on chip multiprocessors,” The 6th Workshop on
Multithreaded Execution, Architecture, and Compilation, 2002.

[8] I. Ganusov and M. Burtscher, “Future execution: A hardware prefetching
technique for chip multiprocessors,” Parallel Architectures and Compi-
lation Techniques, pp. 350–360, Sep 2005.

[9] SPARC64-III User’s Guide, HAL Computer Systems/Fujitsu, May 1998.
[10] MOSAID Technologies Inc., Feature Sheet: MOSAID Class-IC

DC18288, 1st ed., Feb. 2003.

166

