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Abstract. Distributed sensor network is an important research area
of multi-agent systems. We focus on a type of distributed sensor net-
work systems that cooperatively observe multiple targets with multiple
autonomous sensors that can control their own view. The problem of
allocating observation resource of the distributed sensor network can be
formalized as distributed constraint optimization problems. However, in
the previous works, the computation cost to solve the resource alloca-
tion problem highly increases with its scale/density. In this work, we
divide the problem into two layers of problems, and two layered cooper-
ative solvers are applied to those problems. The result of the experiment
shows that our proposed method reduces the number of message cycles.

Keywords: Distributed Constraint Optimization Problem, Multi-agent,
Distributed sensor network.

1 Introduction

Distributed Constraint Optimization Problem (DCOP) is an important research
area of multi-agent systems[1][2][3][4]. In DCOPs, agent’s state is represented
by variables; and, relations between agents are represented by constraints and
cost functions. Each agent decides/determines the values of its own variables by
exchanging information with other agents. The goal is to assign global optimal
values to the variables. DCOPs are an important model that represents coop-
erated resource scheduling problems in distributed systems. On the other hand,
distributed sensor networks are studied as practical problems of multi-agent sys-
tems. In previous studies, resource allocation problems of the distributed sensor
network are formalized as DCOPs[5][6]. There are various purposes of distributed
sensor networks. An important purpose is to give information in a large obser-
vation area. Other purposes include cooperative navigation of robots using dis-
tributed sensor networks. In this paper, we focus on a type of observation system
that cooperatively observes multiple targets with multiple autonomous sensors
that can control own view. An important problem in the observation system
can be formalized as an allocation problem of observation resources. In this pa-
per, we considered the problem at a snapshot for an initial examination of the
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proposed method. In the actual system, the environment changes dynamically
in situations such as observation targets are moving. Therefore, it is necessary
to allocate observation resources responding to the changing environment. That
problem can be represented by repeatedly solving a consecutive set of snapshot
problems. On the other hand, the time for a snapshot is limited. Therefore it is
reasonable to apply stochastic methods that can find solution in comparatively
short time. However, the problem including cooperation by agents and the re-
source allocations is complex. Then, in this paper, we propose a method that
divides the problem into two layers: layer of leader election and the layer of ob-
servation resource allocation. It is expected that our proposed method reduces
the complexity of the problem and efficiently solves the problem.

In section 2, DCOP and a search algorithm for the DCOP are shown. In
section 3, we explain how to represent the resource allocation problem in the
distributed sensor network. Then, some conventional formalizations of the prob-
lem are shown. A model based agency is also shown. In section 4, we propose
the method that divides the problem into two layers. In section 5, our proposed
method is evaluated. And we conclude in section 6.

2 Distributed Constraint Optimization Problem

DCOP consists of a set of agents. Each agent ai has some variables Xi =
{x1

i , · · · , xk
i }. xk

i takes a value from discrete finite domain Dk
i . ai is the only

agent that can decide the values of Xi. That is, the variable shows agent’s state
and decision. The relation between a set of variables is defined as a constraint
c. A cost function fc defines the cost for a set of variables. fc is the cost func-
tion of c. A cost value represents the degree of violation on constraint c. There
are constraints which cannot be relaxed and constraints which can be relaxed.
The constraints which cannot be relaxed are defined as hard constraint. The
constraints which can be relaxed are defined as soft constraint. A goal of the
problem is to find optimal assignments of variables that minimize global cost
value.

ADOPT[1] and DPOP[7] have been proposed as exact methods for DCOP.
ADOPT performs as distributed version of branch and bound/A∗ search based
on depth first search tree for constraint network. DPOP is based on dynamic
programming. In these methods, search iterations or memory uses exponentially
increase according to induced-width[7] of the depth first search tree. On the other
hand, DSA[2] and DSTS[3] have been proposed as stochastic algorithms. The
solution found by these methods may not be optimal. However, these stochastic
methods find suboptimal solutions with less number of cycles than ones of exact
algorithms. In this work, we apply DSTS to the resource allocation problem in
the distributed sensor network.

DSTS is a distributed stochastic search algorithm based on DSA. DSTS em-
ploys a tabu search to get out from local optimal solution. In search processing,
each agent exchanges the values of its variables. Then each agent ai calculates
costs for assignments. The costs are evaluated for assignments of ai’s variables
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1 initialize own variables;
2 empty tabu list;
3 send variables’ values to agents related by constraints;
4 while not terminated do
5 receive variables’ values from other agents rlated by constraints;
6 call maintainance;
7 end while
8 procedure maintainance
9 if all variables’ values are in the tabu list then

10 noting to do;
11 else if NA VALUEs have been received from all agents related by constraints

then
12 assign new values to variables;
13 else if Δ ≥ 0 then
14 assign new values to variables with p1;
15 else if current cost > 0 then
16 assign new values to variables with p2;
17 end if
18 if all values are in the tabu list then
19 send NA VALUE to agents related by constraints;
20 else if new valiables’s value is assigned then
21 send own variable’s value to agents related by constraints;
22 add new variable’s value to the tabu list;
23 end if
24 end procedure

Fig. 1. Pseudo code of DSTS

with values of other agent’s variables that are related by constraints. Accord-
ing to the costs, the agent ai stochastically changes its variable’s value to value
which obtains best cost with probability p1. Moreover, each agent uses the tabu
search to get out from local optimal solution. Each agent adds variable’s value to
tabu list. It prevents the variable from changing its value for a certain term(i.e.
tabu period). Improvement of the cost value Δ takes negative value because of
tabu search. In that case, each agent changes the values of variables with prob-
ability p2. A pseudo code of DSTS is shown in Fig. 1. In Fig. 1, NA VALUE
represents that all values of ai’s variables are in the tabu list.

3 Resource Allocation Problems in Distributed Sensor
Network

In this section, a model of resource allocation problem for the distributed sensor
network is shown. Then we show some formalization for the resource allocation
problem based on DCOPs. Another framework based on the concept of agency
is also shown.

3.1 Grid Model

Grid model is a basic representation of allocation problem that allocates obser-
vation resource of a sensor to a target. In the grid model, sensors are arranged
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Fig. 2. Example of grid model

on the nodes of a uniform grid. Targets are located within the area enclosed by
the grid. In related studies, models like this were used[6][5]. In this work, we
focus on a type of observation system that consists of autonomous sensor nodes.
That is, a sensor is an agent. In Fig. 2, si represents the sensor and tj represent
the target. We assume that only one target can exist in one area.

There is the limitation about the view of the sensor. This restriction cannot be
compromised. The limitation about the view is modeled as a constraint such that
the sensors can observe adjoining areas. Moreover, the sensors cannot observe
multiple targets at a time. This limitation is modeled as a constraint such that
the sensors can observe only one target at a time. On the other hand, it is
preferable to observe one target with multiple sensors because more information
about the target is obtained. This purpose is modeled as a constraint such that
each target has to be observed by three sensors. However, this purpose can be
relaxed because the targets can be observed by a smaller number of sensors.

3.2 Formalization Based on DCOP

In the following, two DCOP based formalizations for sensor resource allocation
problem are shown. These are STAV[1] and TAV[5].

STAV (Sensor-Target As Variable): STAV is a model of formalization
which defines a variable for a pair of a sensor and a target. An example of
a sensor network shown in Fig. 2 is formalized as a STAV problem shown in
Fig. 3. In Fig. 3, xsi

tj
represents a variable of si for target tj . For each sensor

si, variables are defined for targets that can be observed by si. In this exam-
ple, s0, s2, s3, and s5 have one variable because they can observe only one
target. s1 and s4 have two variables because they can observe two targets. A
value of xsi

tj
represents which sensors are allocated to tj . If a set of sensors that

Fig. 3. Constraint network with STAV Fig. 4. Constraint network with TAV
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can observe tj is {s0, · · · , sn}, xsi
tj

takes a combination of sensors as a value.
{φ, {s0}, · · · , {sn}, {s0, s1}, · · · , {s0, · · · , sn}} is the domain of xsi

tj
. With this for-

malization, three types of constraints are defined, and they are shown in Fig. 3
as cST0, cST1 and cST2. Details of the constraints are as follows.

– cST0(xsi
tj

): Allocating sensors to observation target
This constraint represents a requirement that three sensors are allocated to
a target. If the number of sensors allocated to tj is fewer than three, the
constraint is not fully satisfied. In such case, this constraint can be relaxed.
The cost function fcST0 for cST0 is defined as follows. wcST0

is the weight
parameter which represents degree of violation. In expression (1), a value of
ntj represents the number of sensors allocated to tj .

fcST0(x
si
tj

) =

⎧
⎪⎪⎨

⎪⎪⎩

wcST0

0 ntj = 0
wcST0

1 ntj = 1
wcST0

2 ntj = 2
0 otherwise

(1)

– cST1(xsi
tj

, xsi
tj′ ): Restriction of observation resource

This constraint represents a restriction about the number of targets where
a sensor can be allocated. If a sensor is allocated to multiple targets, the
constraint is violated. This constraint cannot be relaxed. The cost function
fcST1 for cST1 is defined as follows. wcST1

is the weight parameter.

fcST1(x
si
tj

,x
si
t
j′

) =

{
wcST1

xsi
tj
∩ xsi

tj′ �= φ

0 otherwise
(2)

– cST2(xsi
tj

, x
si′
tj

): Consistency of allocation of observation resource
This constraint represents cooperation that sensors are allocated to targets
without contradiction. If the variables’ values for the same target are different
between sensors, the constraint is violated. This constraint cannot be relaxed.
The cost function fcST2 for cST2 is defined as follows. wcST2

is the weight
parameter.

f
cST2(x

si
tj

,x
s

i′
tj

)
=

{
wcST2

xsi
tj

�= x
si′
tj

0 otherwise
(3)

The variable and the constraint increase because this model represents the ex-
plicit agreement between agents.

TAV (Target As Variable): TAV is a model of formalization which defines
a variable for a target. An example of a sensor network shown in Fig. 2 is
formalized as a TAV problem shown in Fig. 4. In Fig. 4, xtj represents a variable
for target tj . A value of xtj represents which sensors are allocated to tj . If a set of
sensors that can observe tj is {s0, · · · , sn}, xtj takes a combination of sensors as
a value. {φ, {s0}, · · · , {sn}, {s0, s1}, · · · , {s0, · · · , sn}} is the domain of xtj . With
this formalization, two types of constraints are defined. They are shown in Fig. 4
as cT0 and cT1. Details of the constraints are as follows.
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– cT0(xtj ): Allocating sensors to observation target
This constraint represents a requirement that three sensors are allocated
to a target. If the number of sensors allocated to tj is fewer than three,
the constraint is not fully satisfied. In such case, this constraint can be
relaxed. The cost function fcT0 for cT0 is defined as follows. wcT0

is the
weight parameter which represents the degree of violation. In expression (4),
a value of ntj represents the number of sensors allocated to tj .

fcT0(xtj
) =

⎧
⎪⎪⎨

⎪⎪⎩

wcT0

0 ntj = 0
wcT0

1 ntj = 1
wcT0

2 ntj = 2
0 otherwise

(4)

– cT1(xtj , xtj′ ): Restriction of observation resource
This constraint represents a restriction about the number of targets where a
sensor is allocated. If a sensor is allocated to multiple targets, the constraint
is violated. This constraint cannot be relaxed. The cost function fcT1 for cT1

is defined as follows. wcT1
is the weight parameter.

fcT1(xtj
,xt

j′ )
=

{
wcT1

xtj ∩ xtj′ �= φ

0 otherwise
(5)

In TAV, variables are defined for targets. It seems that target has a variable.
However, in the system assumed in this paper, targets are not agents. It is not
clear what variables agents have. Therefore, TAV cannot be applied.

3.3 Cooperation Model with Agency

The observation system by distributed cooperative processing with the agency[8]
has been proposed besides the frame of DCOP. An agency is a group of agents.
Fig. 5 shows the concept of the agency based cooperative observation system.
This system consists of camera agents which can control a view (AVA: Active
Vision Agent) and there are some observation targets. Each AVA operates au-
tonomously. The basic characteristic of autonomous camera agents is similar to

Fig. 5. Cooperation model based on agency[8]
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that of sensors as it is assumed in this paper. The outline of this system is as
follows.

– Each AVA is an observation resource which can be allocated to a target.
– When AVA detects a target, each AVA makes an agency.
– One of AVAs in a agency performs as a manager(AM:Agency Manager).

Other AVAs follows the AM’s decision.
– Each AM exchanges information, and decides the distribution of the obser-

vation resource.
– Observed information is gathered and managed by each AM.

The efficiency of this system was demonstrated by a small-scale experimental
environment with real machines. Therefore, it is thought that use of layered
structures for cooperation is more effective. However, in this system, the prob-
lem is not formalized as an optimization problem like DCOP, and optimization
method in DCOP frameworks is not used.

4 Applying Layered Structure into Formalization by
DCOP

In our proposed method, we apply a layered structure into formalization by
DCOP. The original resource allocation problem in the distributed sensor net-
work is divided into two problems that represent the leader election problem and
the observation resource allocation problem. These two problems are rather easy
compared to the original problem. It is thought that this formalization can inte-
grate efficient cooperated operation by agency with flexible problem description
with constraint network.

4.1 Layer1: Leader Election Problem

In this layer, some agents are elected as leader of a target. In the following, each
sensor is identified with an agent. The leader can be considered as the manager
of the agency based cooperation model[8]. In this work, we define a rule that each
leader must be allocated to its relative target. An example of a sensor network
shown in Fig. 2 is formalized as a leader election problem shown in Fig. 6. In

Fig. 6. Leader election problem layer Fig. 7. Resource allocation problem layer
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Fig. 6, xsi
tj

represents a variable of si for tj . For each sensor si, variables are
defined for targets that can be observed by si. A value of xsi

tj
represents which

sensor is a leader of tj . If a set of agents that can observe tj is {s0, · · · , sn}, the
value of xsi

tj
is selected from {φ, s0, · · · , sn}. With this formalization, five types

of constraints are defined, and they are shown in Fig. 6 as cL0, cL1, cL2, cL3 and
cL4. Details of the constraints are as follows.

– cL0(xsi
tj

): Requirement of a leader for a target
This constraint represents a requirement that a leader is selected for a target.
If there is no leader of the target, the constraint is not fully satisfied. This
constraint can be relaxed. The cost function fcL0 for cL0 is defined as follows.
wcL0

is the weight parameter which represents the degree of violation.

fcL0(x
si
tj

) =
{

wcL0

0 xsi
tj

= φ

0 otherwise
(6)

– cL1(xsi
tj

, xsi
tj′ ): Restriction of a leader

This constraint represents that each sensor is allocated to one target as its
leader. If a sensor is the leader of multiple targets, the constraint is violated.
This constraint cannot be relaxed. The cost function fcL1 for cL1 is defined
as follows. wcL1

is the weight parameter.

fcL1(x
si
tj

,x
si
t
j′

) =

{
wcL1

xsi
tj

= xsi
tj′

0 otherwise
(7)

– cL2(xsi
tj

, x
si′
tj

): Consistency of allocation of leader
This constraint represents cooperation that all leaders are elected without
contradiction. If the variables’ values for the same target are different be-
tween sensors, the constraint is violated. This constraint cannot be relaxed.
The cost function fcL2 for cL2 is defined as follows. wcL2

is the weight pa-
rameter.

f
cL2(x

si
tj

,x
s

i′
tj

)
=

{
wcL2

xsi
tj

�= x
si′
tj

0 otherwise
(8)

– cL3(xsi
tj

): Ensuring allocation candidate 1
This constraint represents a requirement which ensure allocation candidates.
Because the leader has to observe the target where the leader has been
allocated as mentioned above, the leader is excluded from the allocation
candidate of other targets. That may prevent fair sensor resource allocation.
For that reason, there are situations where it is impossible to allocate a
sufficient number of sensors to a target. To avoid this situation, the number of
targets which the leader can observe should be small. If the number of targets
that the leader can observe is not minimum value in candidate sensors, the
constraint is not fully satisfied. This constraint can be relaxed. The cost
function fcL3 for cL3 is defined as follows. wcL3

is the weight parameter. In
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expression (9), Stj represents that set of sensors which can observe tj and vi

represents the number of targets which can be observed by si.

f
cL3(xsi

tj
)
=

{
wcL3 ∃s ∈ Stj , vs < v

xsi
tj

0 otherwise
(9)

– cL4(xsi
tj

, xsi
tj′ ): Ensuring allocation candidate 2

This constraint represents a requirement which ensure allocation candidates.
This is a constrain for avoiding situations where areas that can be observed
by leaders are overlapped. Especially, in the grid model, each sensor can
observe its four adjoining areas. If two or more adjoining areas of a leader
overlap with another leader’s adjoining areas, the constraint is not fully
satisfied. This constraint can be relaxed. The cost function fcL4 for cL4 is
defined as follows. wcL4

is the weight parameter. In expression (10), Rsi

represents set of areas that can be observed by si.

fcL4(x
si
tj

,x
si
t
j′

) =

{
wcL4 |Rx

si
tj

∩ Rx
si
t
j′
| > 1

0 otherwise
(10)

The number of variables in the leader election problem is the same as STAV.
However, in this problem, each variable’s domain contains five values because
there are four agents which can observe each target. In STAV, each variable’s
domain contains 16 values. Therefore, the leader election problem is easier than
STAV. On the other hand, this model can be considered that agents decide which
agents own variables in TAV.

4.2 Layer2: Observation Resource Allocation Problem

In this layer, the observation resource allocation problem is solved by leaders. The
leaders exchange information and solve the problem. Agents which are not leader
follow leaders’ decisions. Because one leader is elected each target in the layer of
leader election problem, an example of a sensor network shown Fig. 2 is formalized
as an observation resource allocation problem shown in Fig. 7. In Fig. 7, xtj is a
variable of leader of tj . A value of xtj represents which sensors are allocated to
tj . If a set of sensors that can observe tj is {s0, · · · , sn}, xtj takes a combination
of sensors as a value. {φ, {s0}, · · · , {sn}, {s0, s1}, · · · , {s0, · · · , sn}} is the domain
of xtj . With this formalization, two types of constraints are defined, and they are
shown in Fig. 7 as cA0 and cA1. Details of the constraints are as follows.

– cA0(xtj ): Allocating sensors to targets
This constraint represents a requirement that three sensors are allocated
to a target. If the number of sensors allocated to tj is fewer than three,
the constraint is not fully satisfied. In such case, this constraint can be
relaxed. The cost function fcA0 for cA0 is defined as follows. wcA0

is the
weight parameter which represents degree of violation. In expression (11), a
value of ntj represents the number of sensors allocated to tj .
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fcA0(xtj
) =

⎧
⎪⎪⎨

⎪⎪⎩

wcA0

0 ntj = 0
wcA0

1 ntj = 1
wcA0

2 ntj = 2
0 otherwise

(11)

– cA1(xtj , xtj′ ): Restriction of observation resource
This constraint represents a restriction about the number of targets to which
a sensor is allocated. If a sensor is allocated to multiple targets, the constraint
is violated. This constraint cannot be relaxed. The cost function fcA1 for cA1

is defined as follows. wcA1
is the weight parameter.

fcA1(xtj
,xt

j′ )
=

{
wcA1

xtj ∩ xtj′ �= φ

0 otherwise
(12)

Because the representation of the constraint network of this layer is similar to
using TAV, the number of variables in this layer is fewer than the number of
variables in using STAV. So the constraint network is sparser. Moreover, because
the leader must observe at a target, the number of values that can be taken by
variables is reduced. Therefore, it is thought that the problem in this layer is
solved easily.

4.3 Synchronization between Two Layers

It is necessary to synchronize between two layers in the proposed method. On
the other hand, each agent needs only information of agents which are related
by constraints. In other words, each agent can solve own problem by receiving
information from agents which relate by constraints. In the proposed method,
each agent elected as a leader sends messages to agents which have the possibility
of relating by constraint on a resource allocation problem. In this way, each agent
can realize which agent is a leader and shift to solving the resource allocation
problem. Conditions to judge that si has been selected as a leader are defined
as follows.

– The agent is a leader for one of targets: if J is a set of targets which can be
observed by si, this condition is defined as follows.

l1 =
{

true ∃tj ∈ J, xsi
tj

= si

false otherwise
(13)

– All of hard constraints of si in leader election problem are satisfied: if C is
a set of hard constraints of si in leader election problem, this condition is
defined as follows.

l2 =
{

true ∀c ∈ C, fc = 0
false otherwise

(14)

If l1 ∧ l2 = true, the agent is a leader and sends messages to other agents. When
the problem has not been globally solved, there is a possibility that l1∧l2 become
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1 initialize variables;
2 is leader ← false;
3 empty leader list;
4 while not terminated do
5 previous status ← is leader;
6 receive messageses from other agents related by constraints;
7 clear current status;
8 if new leader has been elected then
9 add new leader to leader list;

10 store the information of new leader into current status;
11 end if
12 if elected leader came off then
13 remove old leader from leader list;
14 store the information of removed leader into current status;
15 end if
16 call maintenance of DSTS for solving leader election;
17 if previous status = false then
18 if l1 ∧ l2 = true then
19 is leader ← true;
20 store is leader into current status;
21 end if
22 if previous status = true then
23 if l1 ∧ l2 = false then
24 is leader ← false;
25 store is leader into current status;
26 end if
27 end if
28 if is leader = true then
29 call maintenance of DSTS for resource allocation problem
30 end if
31 send current status and variables’ values to agents related by the constraints.
32 end while

Fig. 8. Pseudo code of the proposed method

false again. At that time, the agent send message about l1 ∧ l2 = false to the
others. In proposed method, the agent send messages to other agents which are
related by constraints, instead of sending to all agents. That reduces message
passing cost. However, non-neighborhood agents on the grid can be related by
constraints. Considering that case, each agent propagates the message. In the
grid model, each agent has to propagate message only one hop. A pseudo code of
the proposed method is shown in Fig. 8. In Fig. 8, is leader represents whether
the agent is a leader. leader list represents list of leaders. Information about the
election of leaders is stored in current status. ”maintenance” procedures in Fig. 1
are performed for each layer. As shown in the line 31 of Fig. 8, a couple of cur-
rent status and variables’ values of two layers of problems are sent at a same time.

5 Experiments

We compared the proposed methods with previous method using STAV and
evaluated the efficiency of dividing the problem into two problems which can
be solved comparatively easily. The previous method is shown as STAV, and
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Table 1. Parameters
of DSTS

p1 p2 tabu period

STAV 0.8 0.4 1 cycle

LYR
Layer1 0.9 0.3 2 cycles
Layer2 0.7 0.2 1 cycle

Table 2. Weight parameters

STAV LYR
Layer1 Layer2

wcST0

0 = 15 cL0 wcL0
= 10 wcA0

0 = 15

cST0 wcST0

1 = 5 cL1 wcL1 = 200 cA0 wcA0

1 = 5

wcST0

2 = 1 cL2 wcL2
= 100 wcA0

2 = 1

cST1 wcST1
= 200 cL3 wcL3

0 = 1 cA1 wcA1
= 200

cST2 wcST2
= 100 cL4 wcL4

= 1

the proposed method is shown as LYR. While several algorithms are applied
to similar problem[5]. We applied DSTS that is a extended version of DSA in
both methods. In LYR, we applied DSTSs to two layers of problems shown in
Fig. 8. Original DSTS does not have termination detection mechanism. Therefore
we apply a simple rule to DSTS for termination. We define the suboptimal
solution as a solution which satisfies all hard constraints. We also evaluated the
cases that any soft constraints are not optimized. In other words, the weight
parameters of soft constraints are 0. Moreover, in LYR, we evaluated the cases
that the soft constraints are not optimized in resource allocation problem. The
experiment aims to evaluate impact of optimality of leader election problem to
global optimality. Those methods are shown as follows.

– STAV: Previous method that all constraints are considered in optimization.
– STAV-NoOpt: Previous method that any soft constraints are not optimized.
– LYR: Proposed method that all constraints are considered in optimization.
– LYR-NoOpt: Proposed method that any soft constraints are not optimized.
– LYR-NoOptInAllo: Proposed method that any soft constraints relaxed in

resource allocation problem are not optimized.

The experiments are performed using simulation programs. The simulation iter-
ates cycles of globally synchronized processing shown as follows.

(1) Each agent receives messages and processes the local part.
(2) Each agent sends messages to the other agents if necessary.

We evaluated the number of cycles when a solution is found, distance of cost of
suboptimal solution and cost of optimal solution, the number of sensors allocated
to a target, and the number of messages. The maximum number of cycles for a
trial is limited to 1000. If a solution could not be found within the 1000 cycles,
the number of cycles is considered as the upper limit value. In such case, the
result of the trial is not included in other evaluations. We prepare four problem
classes. There are ten instances in each class. The result of a class is the average
of result of all instances in the class. For each instance 1000 trials are performed.

5.1 Parameters of DSTS and Weight Parameters of Constraints

Parameters of DSTS are shown in Table 1. The parameters are decided accord-
ing to the best results of preliminary experiments. Weight parameters of DSTS
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are shown in Table 2. The total degrees of violations of soft constraints must be
smaller than a weight parameter of a hard constraint. Moreover, the weight pa-
rameters of hard constraints are set according to the total number of constraints.
If the type of hard constraints is mostly contained in problem instances, rela-
tively small weight value is set for the constraint. That aims to keep a balance
on total weight parameters. The balance is expected to reduce number of search
iterations because it reduces cases of local optima. In leader election problem,
in order to elect a leader in all targets as much as possible, wL0 is bigger than
wL3 and wL4.

5.2 Change Conditions of Variable’s Value and Termination Rule

In addition to the above parameter settings, we modified change conditions of
variable’s value of DSTS. The modifications aim to obtain the best result for
each method. And as shown above, we have applied termination rule to DSTS.

– Condition to take other values of variables
In leader election problem of LYR, the variable’s value is changed with prob-
ability p1 if Δ > 0. On the other hand, in STAV and resource allocation prob-
lem of LYR, the variable’s value is changed with probability p1 if Δ ≥ 0.
This condition increases frequency to get out from local optimal because
it increases neighborhood solutions that can be selected as the locally best
solution.

– Condition to find the solution early
Each agent changes the variable’s value with p2 if Δ < 0 when the agent
has a violation for hard constraints. This condition is applied to STAV and
LYR. By this condition, each agent does not change the values if Δ < 0 when
the agent satisfied the all of the hard constraints. It aims to find suboptimal
solution in fewer number of cycles.

– Termination rule to decide a suboptimal solution
If each agent changes the variable’s value when Δ ≥ 0, the agent cannot
decide a solution because there is no rule to choose one solution from the
set of solutions which have same degree of violation . Therefore, when the
agent satisfied all of the hard constraints, the agent changes the variable’s
value with probability p1 if Δ > 0. This rule is applied to DSTS of STAV
and LYR. By this rule, each agent does not change variable’s value even if
there are some solutions which have same degree of violation.

5.3 Problem Settings

We prepared four classes of problem. Each problem is generated according to t
and n as parameters. t decides the number of targets. n decides the limitation
number of targets which exist in each target’s adjoining area. We used the pa-
rameters t = 5, 10 and n = 2, 3. Problems are generated as follows.

(1) The first target is placed on an area at random. (2) The next candidate areas
to place a new target are the empty adjoining areas of target. (3) The area where
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the number of adjacent targets is more than n is excluded from the candidates.
(4) The new target is placed into an area that is randomly selected from the
candidate areas. (5) Repeat 2 to 4 until the number of target becomes t.

5.4 Results

The number of cycles until finding suboptimal solution are shown as Fig. 9(a).
The results show that LYR needs less number of cycles. Main reason of the result
is that complexity of the problem is reduced by dividing the problem into two
layers. In the results of STAV-NoOpt, less number of cycles is required, when
compared to STAV. It is a reasonable result because optimization problem is
more difficult than satisfaction problem.

(a) Number of cycles

(b) Distance from optimal solution

(c) Number of sensors allocated to a target

(d) Number of messages

Fig. 9. Results
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The difference of cost between suboptimal solution and optimal solution are
shown as Fig. 9(b). The result shows that LYR’s cost is larger than STAV’s cost.
A reason of this drawback is local optimal solution in leader election problem.
Such local optimal solution causes a situation that some targets are ignored in
sensor resource allocation by relaxing soft constraints. In addition, number of
sensors which can be allocated for each target is often disproportional in sensor
resource allocation layer. That is caused by a bias of greedy decision in leader
election. There might be targets which can not be allocated enough number
of sensors according to the leader’s arrangement. Costs of STAV-NoOpt, LYR-
NoOpt and LYR-NoOptInAllo are relatively large, because these methods do
not optimize soft constraints as mentioned above.

The number of sensors allocated to a target are shown as Fig. 9(c). The
number of targets with no sensors in LYR is more than in STAV. However, this
difference is relatively small. In LYR, the number of sensors allocated to a target
is disproportional due to the bias in leader election. In the case of STAV-NoOpt,
LYR-NoOpt and LYR-NoOptInAllo, the number of sensors allocated to targets
is relatively few.

The number of messages per cycle are shown as Fig. 9(d). Each agent sends
messages to other agents which are related by constraints. However, each agent
does not have to send messages if its variables’ value are not changed. Therefore,
in the leader election of LYR, each agent that has been found a local suboptimal
solution does not send the message. Leaders have to send message of resource
allocation problem. In resource allocation problem, the number of messages sent
by leader is fewer than the number of messages in leader election. The reason of
less number of messages is that only leader agents are related with constraints
in the resource allocation problem. In addition, the messages for synchroniza-
tion are not sent if it is not necessary. Therefore, the number of messages per
cycle is reduced by LYR. On the other hand, in the later period of search, the
number of agents that have been found local suboptimal solution is increased.
That relatively decreases average number of messages in the methods that need
much number of cycles. Therefore, in STAV and LYR-NoOpthe, the number of
messages per cycle is comparatively few.

In LYR, although the number of cycles is significantly reduced, the number
of sensors allocated to a target is disproportional. However, we think this type
of trade off can be acceptable in some actual systems that need fast reasons. On
the other hand, the number of sensors allocated to target by LYR is more than
that by STAV-NoOPt, LYR-NoOPt and LYR-NoOptInAllo. Therefore LYR is
more effective than those methods.

6 Conclusions

In this paper, we proposed a DCOP based cooperative resource allocation
method for distributed sensor network systems. In the proposed method, the
problem is divided into two layers of sub-problems: leader election and sensor
resource allocation. Then a stochastic DCOP solvers is applied to each layer
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of problems. The solvers cooperate with partial synchronization. Experimental
result shows that proposed method significantly reduces number of cycles in dis-
tributed search processing. It is efficient to divide the complex problem into two
or more comparatively easy problems. On the other hand, the number of sensors
allocated to a target is disproportional due to bias of leader election problems.
More detailed analysis, applying other previous algorithms including DSA[2],
improving design of constraints and search strategy, and applying to practical
observation systems are included in future works.
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