
STATE GENERALIZATION WITH SUPPORT VECTOR MACHINES
IN REINFORCEMENT LEARNING

Ryo Goto, Toshihiro Matsui and Hiroshi Matsuo

Department of Electrical and Computer Engineering, Nagoya Institute of Technology
Gokiso-cho, Showa-ku, Nagoya, 466-8555, JAPAN

{rgoto,tmatsui}@mars.elcom.nitech.ac.jp, matsuo@elcom.nitech.ac.jp

ABSTRACT
The conventional reinforcement learning assumes

discrete state space. Therefore, it is necessary to make
states discrete manually in order to handle continuous
state environments. However, if the simple discretiza-
tion is applied, the number of states increases expo-
nentially with the dimension of the state space, and
the learning time increase.

In this paper, we propose a state generalization that
is able to quickly adapt to environments by using Sup-
port Vector Machines. To evaluate this method, we do
an experiment on the simulation task that navigates a
robot to a goal.

1. INTRODUCTION

Recent advancement of the robot technology raised the
necessity of the learning robot that autonomously adapts
to environment. As an effective technique to learn effec-
tive control rules, reinforcement learning has attracted
many attentions. Reinforcement learning is framework
of the learning which automatically acquires control
rules from the given reward signal.

The conventional reinforcement learning methods
are targeting discrete state spaces. Therefore, when
continuous states should be handled, it is necessary to
discretize the state space appropriately. However, in
the high dimensional state space, discretization causes
the increase in the number of states, and the learning
time and required memories increase remarkably. This
problem is serious when we consider applying reinforce-
ment learning to a real task because a state input is
often given as a continuous multidimensional vector.

To address this problem, there is an approach of
approximating the value function with the continuous
function[1][2]. In this approach, it is possible to choose
effective action even for inexperienced states by exploit-
ing old experiences, but a lot of trial is needed to adapt
to complicated environment. There is also another ap-
proach that generalizes states and constructs the state

space appropriately. The methods adopting this ap-
proach are also proposed[3], however most of them use
simple models.

In this paper, we propose a method that learns ef-
fectively with a few experience and quickly adapts to
environment by generalizing multidimensional contin-
uous states using Support Vector Machines (SVMs)[4].
SVM is a two-class pattern recognition method with
some advantages. Our method is able to generalize
more flexibly than conventional techniques.

In the subsequent sections, we provide overview of
reinforcement learning and SVMs. Then, we describe
the proposed method and do an experiment on the sim-
ulation task that navigates a robot to a goal to evaluate
this method.

2. REINFORCEMENT LEARNING

Reinforcement learning is one of the non-supervised
learning technique in which the reward signal is given
not for an individual action but for a series of actions.

Typical reinforcement learning algorithms such as
Q-learning[5] evaluate state values based on the re-
wards. The state value is the total expected discounted
reward attained by the optimal policy starting from the
state. The method handling continuous state space by
approximating the value function with the continuous
function such as Incremental NGnet (INGnet) [2] is
proposed. INGnet is a method that extends radial ba-
sis function networks and learns the value function for
the continuous state space by placing basis functions if
needed.

3. SUPPORT VECTOR MACHINE

Support Vector Machine (SVM) is a two-class pattern
recognition method and learns the decision function
f(x) for determining the class of input x from N train-
ing data {(x1, y1), . . . , (xN , yN )}, where xi ∈ Rn is a



margin

positive
examples

negative
examples

H0

H1

H2

Figure 1: The separation of linear SVM

training example and yi ∈ {−1, 1} is a class assigned
to xi.

3.1. Linear SVM

Figure 1 shows the concept of separation of linear SVM.
As shown in this figure, we suppose that all training
data are separable linearly. H0 : w · x + b = 0 is a
hyperplane which separate positive examples and neg-
ative examples, where w is the normal vector of this
hyperplane and b is a constant. The nearest positive
example to H0 and the nearest negative example to H0

are on H1 : w ·x+b = 1 and H2 : w ·x+b = −1 parallel
to H0, respectively. The distance between H1 and H2

is called margin. SVM is an algorithm for finding the
separation hyperplane H0 that maximize the margin.

No positive examples exist in H0 side from H1 and
no negative examples exist in H0 side from H2, so we
have the following equation:

yi(w · xi + b)− 1 ≥ 0 (1)

To maximize the margin, we should maximize 1/‖w‖.
This can be formulated as the problem that minimiz-
ing 1

2‖w‖2 subject to Equation 1. This problem can be
transformed into a dual quadratic programming prob-
lem using Lagrange multipliers α = {α1, . . . , αl}. When
α is solved, we can get w =

∑l
i=1 αiyixi, and the de-

cision function is

f(x) = w · x + b =
l∑

i=1

αiyixi · x + b (2)

We provided overview of the perfect linear separa-
tion, however this is applicable in the case of imperfect
separation.

Instead of solving standard quadratic programming
problem, we can solve α by using Sequential Minimal
Optimization (SMO) algorithm[6]. We used this algo-
rithm in this research.

3.2. Nonlinear SVM

In nonlinear SVM, training data is mapped to the other
high dimensional space H by Φ : Rn 7→ H, and sepa-
rated nonlinearly by applying linear separation on H.
In this case, the decision function is

f(x) =
l∑

i=1

αiyiK(xi, x) + b (3)

where K(x, y) = Φ(x) · Φ(y). Although it is difficult
to find mapping Φ, it is not necessary to know Φ if
inner products on H can be calculated. The function
K(x, y) is called kernel function and some valid kernel
functions are known. In this research, we use

K(x, y) = exp(−‖x− y‖2
2σ2

) (4)

where σ is a constant.

4. STATE GENERALIZATION USING SVM

It is necessary to generalize multiple states as a state
because states exist innumerably in the continuous state
space. However, many of conventional methods use the
generalization based on a simple model like an ellip-
soidal model[3]. Therefore, construction of state space
will be complicated in some environments and estima-
tion for unknown states is weak.

In this section, we propose the state generalization
method in which the state value is estimated and the
states where value rises after action are generalized us-
ing SVM. SVM is a technique that is able to sepa-
rate data nonlinearly, and it can generalize states in
multidimensional continuous state space more flexibly
than conventional methods. Therefore, the proposed
method can presume the optimal action at inexperi-
enced states by exploiting the function of SVM and
adapts to environment from a few experience. Below,
we describe each procedure of the proposed method.

4.1. Collection of state transitions

To generalize states, it is necessary to get states and
their attributes. Therefore, the state transitions are
collected from N trials and each transition is expressed
with (s, a, s′), where s is a state before action, a is an
action and s′ is a state after action. If we apply SVM
to all examples, the computation time will increase be-
cause of the large number of examples. So we prepared
the following restrictions:

• Only the examples of L steps backward from the
step that reached the goal state are collected.



goal
state

S0

S0,1 S0,2 S0,nA

a1 a2 anA

a1 a2 anA

S1

S1,1 S1,2 S1,nA

Figure 2: Estimation of state value

• If the action of the new transition is identical
to the action of already collected transition and
both of the distance between the states before
action and the distance between the states after
action are smaller than threshold dth, then the
new state transition is not collected.

4.2. Estimation of state value

The proposed method finally decides whether the state
value rises as a result of performing a certain action.
To do this, the state value must be known. In the
environment in which the reward is placed only at the
goal state, state value is considered to be the number
of optimal steps to the goal state. In this method,
the state space is constructed through operations that
generalize the states that reach the goal state or the
already generalized state at one step, as shown in Fig.
2. The algorithm is stated as follows.

1. Let Dk be a set of transitions in D whose action
is ak ∈ A (k = 1, . . . , nA), where D is a set of
collected transitions, A is a set of performable
actions and nA is the number of elements in A.

For each transition δi = (si, ak, s′i) ∈ Dk, si is
labeled as the positive example if s′i is the goal
state. Otherwise, si is labeled as the negative
example. And they are separated by SVM.

2. Let f0,k be the decision function computed in pro-
cedure 1 and let S0,k = {s|f0,k(s) > 0}. Proce-
dure 1 is performed for all k = 1, . . . , nA, thus
union set S0 =

⋃nA

k=1 S0,k is constructed.

3. For each transition δi = (si, ak, s′i) ∈ Dk, si is
newly labeled as the positive example if s′i ∈ S0.
Otherwise, si is labeled as the negative example.

S0 S1G

negative example

positive example

Figure 3: An example of the attributes of states

However, if si is labeled as a positive example
before this procedure, it is not labeled. Then,
they are separated by SVM and S1 =

⋃nA

k=1 S1,k

is constructed like procedure 2.

4. Similarly, this algorithm constructs sets from S0

to Sm−1, where m is the number of estimating
state values.

4.3. State generalization

Because the states that have same values were only
generalized in previous subsection, state value after an
action can not be presumed globally. In the proposed
method, the states where the values rise after an action
are generalized using SVM for each action, and whole
state space is constructed from two classes. By this
generalization, it is possible to choose the good action
even at the inexperienced state.

1. δi = (si, ak, s′i) ∈ Dk is a state transition in the
collected transitions whose action is ak. Let Sv

be a set of the highest value among the sets that
include si, and Sv′ be a set of the highest value
among the sets that include s′i. si is collected
as a positive example when v > v′ or when Sv

does not exist and Sv′ exists. And it is collected
as a negative example when v ≤ v′ or when Sv

exists and Sv′ does not exist. Figure 3 shows
an example of the attributes of states in state
generalization.

2. After applying procedure 1 to each transition in
Dk, the states are generalized by SVM.

3. Procedure 1 and 2 are applied to all ak ∈ A.

4.4. Selecting action

The generalization error affects the performance of this
method. Therefore, this method selects the action at
random by probability ε, and selects the action that
classifies the input into a positive class by probability



goal

obstacle

x

y

O

robot

a1

a2

a3

a4

advance
direction

θ1

θ2

d1

d2

Figure 4: The task to assume

1 − ε. However, if the input is classified into differ-
ent action’s positive classes, one of them is adopted at
random, and if the input cannot be classified into any
action’s positive class, an action is chosen at random
out of all actions.

5. EXPERIMENTS

5.1. The task to assume

As shown in Fig. 4, we did an experiment on the sim-
ulation task that navigates a robot to a goal. The goal
is a circle with center (x, y) = (0.0, 0.8) and radius 0.1,
and the obstacle is a circle with center (x, y) = (0.0, 0.0)
and radius 0.4. The initial location of the robot is
x = [−0.5, 0.5], y = −0.7. The reward is generated
only when the robot reaches the goal. The valid range
is −2.0 ≤ x ≤ 2.0 and −2.0 ≤ y ≤ 2.0, and the robot is
returned to an initial location when it goes out of valid
range.

Actions of robot are a1 (1.0 advance), a2 (1.0 re-
treat), a3 (0.2π[rad] rotations of the advance direction)
and a4 (−0.2π[rad] rotations of the advance direction).
When the robot tries to perform action that collides
with the obstacle, the action does not perform. How-
ever, a3 and a4 are always performed because the robot
is regarded as a point.

d1 is the distance between the robot and the center
of goal and θ1[rad] (−π < θ1 ≤ π) is the relative angle
to the center of goal from the robot’s advance direction.
Similarly, d2 and θ2[rad] (−π < θ2 ≤ π) are the dis-
tance and the relative angle between the robot and the
center of obstacle. The robot observes 4-dimensional
state (d1, θ1, d2, θ2).

0

50

100

150

200

250

0 20 40 60 80 100 120 140

av
er

ag
e 

st
ep

s

the number of trials

Figure 5: The average number of steps in the pro-
posed method

0

50

100

150

200

250

0 500 1000 1500 2000

av
er

ag
e 

st
ep

s

the number of trials

Figure 6: The average number of steps in INGnet

5.2. Parameter settings

The maximum number of examples collected in each
trial is L = 300, the number of estimated state values
is m = 30, the threshold of distance between two states
is dth = 0.2, and the probability in the action selection
is ε = 0.3. And for the parameter σ of kernel function,
σ = 0.3 in estimation of state value, and σ = 0.5 in
state generalization. The reason why the σ value for
state generalization is bigger is to constitute state space
more globally.

5.3. Comparison with INGnet

We did an experiment on this simulation with the pro-
posed method and INGnet.

We measured the amount of memories that is needed
for learning through 10 experiments. On average, the
proposed method required 4476 vectors for state gen-



(a) (b)

(d)(c)

obstacle

goal

advance direction

Figure 7: The example of construction of the state
space in each action: (a) a1 (advance), (b) a2 (retreat),
(c) a3 (left rotation), (d) a4 (right rotation)

eralization and INGnet required 988 bases. The rea-
son why the proposed method required more memories
than INGnet is that the proposed method needs to con-
struct the state space for every action.

The result of this simulation using the proposed
method and INGnet are shown in Fig. 5 and Fig. 6,
respectively. The value of y-axis is the average of the
number of steps taken to reach the goal state in 1000
simulations, and the agent relearned after changing the
random seed every 100 simulations. As shown in Fig.
5 and Fig. 6, the number of steps converged to near
50 steps in both methods. However, while it was con-
verged by the 1500th trial in INGnet, it was converged
by the 80th trial in the proposed method. Thus, this
method can adapt to environment faster than INGnet.

5.4. Construction of the state space

Figure 7 shows the example of construction of the state
space after 140 learning trials in the proposed method.
The gray region of Figure 7(a) expresses the set of
states in which it is expected that the state value rises
after performing action a1 when the robot’s advance di-
rection is north ((x, y) = (0, 1)). Similarly, Figure 7(b),

(c) and (d) express the construction of the state space
in action a2, a3 and a4, respectively. In this example,
the states classified into the wrong class are seen, and
we consider this was caused by the generalization error
of SVM and reduction of training examples. However,
there is no bad influence of error so much since selection
of action is stochastic.

6. CONCLUSION

In this paper, we proposed a state generalization method
that is able to quickly adapt to environments by Sup-
port Vector Machines. And by the experiment, we
showed that our method quickly adapted to the en-
vironment compared with Incremental NGnet. In the
future work, we will examine how to reduce the mis-
classification, and will compare with the other general-
ization methods.

7. REFERENCES

[1] J. A. Boyan and A. W. Moore, Generalization
in Reinforcement Learning: Safely Approximating
the Value Function, in G. Tesauro, D. S. Touret-
zky, and T. K. Leen eds., Advances in Neural In-
formation Processing Systems 7, pp.369–376. MIT
Press, 1995.

[2] J. Morimoto and K. Doya, Learning Dynamic Mo-
tor Sequence in High-dimensional State Space by
Reinforcement Learning: Learning to Stand Up,
IEICE Transactions on Information and Systems,
Vol.J82-D2, No.11, pp.2118–2131, 1999.

[3] M. Asada, S. Noda, and K. Hosoda, Action-Based
Sensor Space Categorization for Robot Learning,
in Proceedings of IEEE/RSJ International Con-
ference on Intelligent Robots and Systems 1996
(IROS ’96), pp.1502–1509, 1996.

[4] B. E. Boser, I. M. Guyon, and V. N. Vapnik,
A Training Algorithm for Optimal Margin Clas-
sifiers, in Proceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory,
pp.144–152, 1992.

[5] C. J. C. H. Watkins and P. Dayan, Technical
Note: Q-Learning, Machine Learning, Vol.8, No.3,
pp.279–292, 1992.

[6] J. C. Platt, Sequential Minimal Optimization:
A Fast Algorithm for Training Support Vector
Machines, Technical Report MSR-TR-98-14, Mi-
crosoft Research, 1998.


