
©Imperial College, 1995 AHDL Introduction 1

AHDL Introduction

ALTERA Devices, Tools and Techniques

©Imperial College, 1995 AHDL Introduction 2

Contents
◆ Using AHDL
◆ AHDL File Structure Overview

❖ Subdesign Section
❖ Variables Section

➤ State Machines
❖ Logic Section

➤ Boolean Equations
➤ IF and CASE

◆ Examples

©Imperial College, 1995 AHDL Introduction 3

Using AHDL
◆ AHDL is an easy-to-use design entry method

❖ text design entry
❖ simple language

◆ AHDL is powerful and compact
❖ can describe both simple and complex circuits efficiently

◆ AHDL is fully integrated into MAX+plusII
❖ use AHDL subdesigns in the design hierarchy

©Imperial College, 1995 AHDL Introduction 4

AHDL File Structure
◆ AHDL files are ASCII text files

❖ created and edited using built-in text editor (or any text editor)
◆ Major elements of an AHDL file

❖ Title Statement
❖ Include Statement
❖ Constant Statement
❖ Subdesign Section

➤ inputs and outputs of the subdesign
❖ Variable Section

➤ declaration of instances, nodes, registers, state machines
❖ Logic Section

➤ Boolean equations, conditional logic (if and case), macrofunctions,
truth-tables



©Imperial College, 1995 AHDL Introduction 5

Subdesign Section
◆ specifies the interface between this subdesign and other

modules in the design
◆ INPUTs and OUTPUTs are named

❖ names have scope limited to a subdesign
◆ groups can be referred to using the syntax :

❖ E.g. x[3..0] represents x3, x2, x1, x0
◆ examples:

SUBDESIGN top
(

clk1, clk2 : INPUT;
a0, a1, a2 : OUTPUT;
b[7..0] : BIDIR;

)

SUBDESIGN divide2
(

x : INPUT;
div2 : OUTPUT;

)

©Imperial College, 1995 AHDL Introduction 6

Variables Section
◆ declares the variables used in

the Logic Section
◆ types of variables

❖ instances
➤ declares an instance of a

primitive or macrofunction
◆ buffers, flip-flops, I/Os and

gates
◆ use . (dot) syntax to refer to a

port of a primitive in Logic
Section

❖ nodes
➤ declares an intermediate node

(not an input or output)

VARIABLE
ff : DFF

BEGIN
ff.clk = x;

END

VARIABLE
key[3..0] : NODE;

This syntax describes a “group” :-
key[3..0] means key3, key2, key1, key0.

©Imperial College, 1995 AHDL Introduction 7

Variables Section - State Machines
◆ state machines are created in

the Variables Section
◆ name of the machine
◆ keywords

❖ MACHINE
➤ specifies a state machine

❖ OF BITS
➤ optional
➤ names the output bits of the

machine (register outputs)
❖ WITH STATES

➤ comma separated list of states
➤ optional numerical value of the

output bits for each state
➤ first state in list is reset state

VARIABLE
row_seq: MACHINE

OF BITS (row[4..1])
WITH STATES (

r0 = 0,
r1 = 1,
r2 = 2,
r3 = 4,
r4 = 8);

©Imperial College, 1995 AHDL Introduction 8

Logic Section - Boolean Equations
◆ Logic section follows the

Variables Section
◆ enclosed by BEGIN and END
◆ main operators

❖ ! NOT
❖ & AND
❖ # OR
❖ $ XOR
❖ !&, !#, !$ NAND, NOR, XNOR
❖ - negate

◆ Boolean expressions can
involve groups

◆ constants can be used
❖ B"1100" is a binary constant

a[3..0] = b[3..0] & c[3..0];

means : a3 = b3 & c3, a2 = b2 & c2,
a1 = b1 & c1, a0 = b0 & c0

x[4..1] = y[2..1];

means : x4 = y2, x3 = y1,
x2 = y2, x1 = y1

BEGIN
s = a $ b;
c = a & b;
p = ((a & b) # c # (!a & !b &!c));

END;



©Imperial College, 1995 AHDL Introduction 9

Logic Section - IF and CASE
◆ IF statement

❖ used for conditional logic based
on comparisons

➤ ==, !=, >, <, >=, <=
❖ IF/ELSEIF can be expensive in

resources - use CASE instead
where appropriate

◆ CASE statement
❖ more efficient for long ELSEIF

constructions
❖ a structure for implementing

many comparisons on just one
variable

➤ E.g. a 2-bit number code[] is
tested. The output out[] is
Gray coded

IF a[3..0] == b{3..0]
equal = VCC;
smaller = GND;

ELSEIF a[3..0] < b[3..0]
equal = GND;
smaller = VCC;

ELSE
equal = GND;
smaller = GND;

END IF;

CASE code[] IS
WHEN 0 => out[] = B”00”;
WHEN 1 => out[] = B”01”;
WHEN 2 => out[] = B”11”;
WHEN 3 => out[] = B”10”;

END CASE;

©Imperial College, 1995 AHDL Introduction 10

Logic Section - Truth Tables
◆ combinational logic can be

entered as a truth table
❖ keywords:

➤ TABLE and END TABLE
❖ inputs on left of =>
❖ outputs on right of =>

◆ legal entries in a truth table
❖ nodes
❖ groups
❖ VCC and GND
❖ X (don’t care)
❖ constants

TABLE
a,b => sum,carry,gray[1..0];

0,0 => 0, 0, B”00”;
0,1 => 1, 0, B”01”;
1,0 => 1, 0, B”01”;
1,1 => 0, 1, B”11”;

END TABLE;

©Imperial College, 1995 AHDL Introduction 11

Examples
◆ Combinational ◆ Sequential

% Half adder to add %
% together a and b %
% giving sum s and %
% carry c. %

TITLE “Full Adder”
SUBDESIGN myadder
(

a,b : INPUT;
s,c : OUTPUT;

)

BEGIN
s = a $ b;
c = a & b;

END;

% Frequency division by %
% 2. Note the use of the %
% GLOBAL clock. %

TITLE “Divide by 2”
SUBDESIGN divide2
(

x : INPUT;
div2 : OUPUT;

)

VARIABLE
ff : DFF;

BEGIN
ff.clk = GLOBAL(x);
ff.d = !ff.q;
div2 = ff.q;

END;

©Imperial College, 1995 AHDL Introduction 12

Examples
◆ State Machine

(contd ...)

TITLE "Keyboard Scanning State Machine";
SUBDESIGN kbd_scan
(

row_en, clock38, key[1..0] : INPUT;
row[4..1] : OUTPUT;

)
VARIABLE

row_seq: MACHINE
OF BITS (row[4..1])
WITH STATES (

r0 = 0,
r1 = 1,
r2 = 2,
r3 = 4,
r4 = 8);

BEGIN
row_seq.clk = clock38;
row_seq.ena = row_en;
CASE row_seq IS

WHEN r1 =>
IF key[] == 0 THEN row_seq = r2;
ELSE row_seq = r4;
END IF;

WHEN r2 =>
IF key[] == 0 THEN row_seq = r3;
ELSE row_seq = r1;
END IF;

WHEN r3 =>
IF key[] == 0 THEN row_seq = r4;
ELSE row_seq = r2;
END IF;

WHEN r4 =>
IF key[] == 0 THEN row_seq = r1;
ELSE row_seq = r3;
END IF;

WHEN OTHERS => row_seq = r1;
END CASE;

END;


